题目要求:
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42Sample Output:
58 25 82 11 38 67 45 73 42题目要求建立一棵给定结构的二叉搜索树,并且进行层序遍历。
因为给定了结构,因此不能采用一般的方法来创建这棵树,题目指定了采用数组存储,数组存储树的一个问题在于不容易判断树是不是空,以前使用链表存储树的时候,可以通过结点是否为NULL来判断,这里给出一种简单易行的办法。
【数组存储树的方法】
首先建立一个比树的结点个数多1的数组TempT,0位置存储数据-1,然后让树T从位置1开始存储,这样,让空树的索引为-1,当访问T[-1]的时候。实际访问的是TempT[0],而这里存储的数据正好是-1.因此可以通过这样来防止地址越界和方便的的处理。
【元素插入的处理】
因为二叉搜索树的中序遍历是所有元素的升序,因此将要插入的所有元素进行排序,即可得到树的中序遍历结果。
观察数组索引的增加,是根、左、右的顺序进行的,也就是树的先序遍历,对于二叉搜索树,左侧的元素一定小于右侧,因此只需要设计一个计算左子树和右子树元素个数的函数,然后在中序遍历序列中截取,例如第一次截取,0位置的元素左侧有5个元素,则第6个就是根,后面的就是右子树,然后递归的解决所有子树,完成插入。
【元素的层序遍历问题】
层序遍历和DFS基本是一样的,只需要一个队列,然后进行先序遍历即可。
AC代码如下:
#include <iostream> using namespace std; typedef struct TreeNode *Node; struct TreeNode{ int left; int right; int data; }; Node T; int *table; typedef struct Queue_struct *Queue; struct Queue_struct{ TreeNode Elements[101]; int front; int rear; }; Queue createQueue(){ Queue q = (Queue)malloc(sizeof(Queue_struct)); q->front = q->rear = 0; return q; } void EnQueue(Queue q, TreeNode item){ if (q->rear >= 100) { return; } q->Elements[q->rear++] = item; } TreeNode DeQueue(Queue q){ if (q->front == q->rear){ exit(0); } return q->Elements[q->front++]; } void preOrder(TreeNode node){ if (node.left != -2){ printf("%d ",node.data); preOrder(T[node.left]); preOrder(T[node.right]); } } void countNodes(TreeNode node, int* count){ if (node.left != -2){ (*count)++; countNodes(T[node.left], count); countNodes(T[node.right], count); } } int countChilds(TreeNode node){ int count = 0; countNodes(node, &count); return count; } int compare(const void* a, const void* b){ return *(int*)a - *(int*)b; } void InsetToBST(int start, int end, Node node){ if (node->left != -2){ int begin = start; int stop = start + countChilds(T[node ->left]); node->data = table[stop]; InsetToBST(begin, stop - 1, T + node->left); begin = stop + 1; stop = begin + countChilds(T[node->right]); InsetToBST(begin, stop - 1, T + node->right); } } void MediaOrder(Node T){ int count = 0;; Queue q = createQueue(); EnQueue(q, T[0]); while (q->front != q->rear){ TreeNode t = DeQueue(q); if (count == 0){ count = 1; printf("%d", t.data); } else{ printf(" %d", t.data); } if (T[t.left].data!=-1){ EnQueue(q, T[t.left]); } if (T[t.right].data!=-1){ EnQueue(q, T[t.right]); } } printf("\n"); } int main(){ int N; cin >> N; Node TempTree = (Node)malloc(sizeof(TreeNode)*(N+1)); TempTree->left = -2; TempTree->right = -2; TempTree->data = -1; T = TempTree + 1; for (int i = 0; i < N; i++){ Node node = T + i; node->data = 0; scanf("%d%d", &node->left, &node->right); } table = (int*)malloc(sizeof(int)*N); for (int i = 0; i < N; i++){ scanf("%d", table + i); } qsort(table, N, sizeof(int), compare); InsetToBST(0, N - 1, T + 0); MediaOrder(T); return 0; }
1099. Build A Binary Search Tree (30)
原文地址:http://blog.csdn.net/xyt8023y/article/details/44778421