By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
从以下的三角形宝塔的最顶点的数开始,一直往下一层的相邻的数移动,所经过的所有数字的和的最大值是23。
3
7 4
2 4 6
8 5 9 3
亦即3 + 7 + 4 + 9 = 23,暂且称之为最大的「宝塔数」吧。
请找出以下「宝塔」的最大宝塔数:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
请注意:由于仅有16384条不同的路径,通过尝试扫描所有的路径我们可以找到答案。不过,Problem 67是一个同样的但要求出一个100层的宝塔的最大宝塔数的问题,它不可能用穷举法解决,因此一个巧妙的算法是必需的。
//============================================================================ // Name : PE_18.cpp // Author : // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ #include <iostream> #include <cstdio> using namespace std; int num[30][30]; int resu=0; int posX[]={1,1}; int posY[]={0,1}; void getData() { for(int i=0; i < 15; i++){ for(int j=0; j < i+1; j++) cin >> num[i][j]; } for(int i=0; i < 15; i++){ for(int j=0; j < i+1; j++) cout << num[i][j] << " "; cout << endl; } } void f(int x, int y, int value){ if(x==15) { if(value>resu) resu=value; return; } f(x+1,y,value+num[x+1][y]); f(x+1,y+1, value+num[x+1][y+1]); } void solve() { f(0,0,num[0][0]); cout << resu << endl; } int main() { // freopen("18.txt","r",stdin); getData(); solve(); return 0; }
projecteuler---->problem=18----Maximum path sum I,布布扣,bubuko.com
projecteuler---->problem=18----Maximum path sum I
原文地址:http://blog.csdn.net/china_zoujinyong/article/details/28479077