标签:lower_bound
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14635 Accepted Submission(s): 4158

2 1 2 2 1 3 1 2 2 3 3 1
Case 1: My king, at most 1 road can be built. Case 2: My king, at most 2 roads can be built.Hint
Huge input, scanf is recommended.解题思路:
这题用来练lower_bound函数的使用。
这个函数从已排好序的序列a中利用二分搜索找出指向ai>=k的ai的最小的指针。类似的函数含有upper_bound,这一函数求出的是指向ai>k的ai的最小的指针。有了它们,比如长度为n的有序数组a中的k的个数,可以这样求出
upper_bound(a,a+n,k) - lower_bound(a,a+n,k);
参考资料:http://www.cnblogs.com/cobbliu/archive/2012/05/21/2512249.html
代码:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
//int dp[20];
const int inf=0x7fffffff;
//int a[7]={2,1,3,4,8,5,9};
const int maxn=500005;
int road[maxn];
int dp[maxn];
int main()
{
/*fill(dp,dp+7,inf);
for(int i=0;i<7;i++)
cout<<dp[i]<<endl;
for(int i=0;i<7;i++)
{
*lower_bound(dp,dp+7,a[i])=a[i];
}
int len=lower_bound(dp,dp+7,inf)-dp;
for(int i=0;i<len;i++)
cout<<dp[i]<<endl;*/
int n;
int from,to;
int c=1;
while(scanf("%d",&n)!=EOF)
{
fill(dp,dp+n,inf);
for(int i=0;i<n;i++)
{
scanf("%d%d",&from,&to);
road[from]=to;
}
for(int i=1;i<=n;i++)//因为题目输入的原因,这里的下标从1开始。
*lower_bound(dp,dp+n,road[i])=road[i];
int len=lower_bound(dp,dp+n,inf)-dp;
if(len==1)
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most 1 road can be built."<<endl;
}
else
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most "<<len<<" roads can be built."<<endl;
}
cout<<endl;
}
return 0;
}
附上最长上升子序列的模板:
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int dp[20];
const int inf=0x7fffffff;
int a[7]={2,1,3,4,8,5,9};
const int maxn=500005;
int main()
{
fill(dp,dp+7,inf);
for(int i=0;i<7;i++)
{
*lower_bound(dp,dp+7,a[i])=a[i];
}
int len=lower_bound(dp,dp+7,inf)-dp;
for(int i=0;i<len;i++)
cout<<dp[i]<<endl;
return 0;
}
[ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)
标签:lower_bound
原文地址:http://blog.csdn.net/sr_19930829/article/details/24651019