码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 1426 Find The Multiple(BFS 同余模定理)

时间:2015-04-01 21:50:47      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:bfs   poj   acm   

题意  给你一个数n  输出一个仅由0,1组成的数m使得m是n的倍数

找到一个m 是m%n==0 就行了  初始让m=1  然后bfs扩展m的位数  只有两种情况  m = m * 10  或 m = m*10 + 1;

   同余模定理  (a+b) % c = (a%c + b%c) % c,  (a*b)%c = (a%c * b%c) % c;

运用同余模定理  可以只记录余数  这样就可以避免处理大数了 因为余数不会超过n  而n是小于两百的 

对于已经得到过的余数  是可以跳过的  可以考虑下为什么

于是只用保存每一位选的是0还是1  只要保证最后余数为0就行了  

1. 选0 m = m*10 % n;

2. 选1 m = (m*10 + 1) % n;

#include <cstdio>
using namespace std;
const int N = 205;
int q[N], p[N], d[N], n;

int bfs()
{
    int le = 0, ri = 0, r = 1, cr;
    int v[N] = {0};
    v[q[ri++] = r % n] = d[0] = 1;
    p[0] = -1;
    while(le < ri)
    {
        cr = q[le];
        if(cr == 0)  return le;
        if(!v[r = cr * 10 % n])
            v[r] = 1, p[ri] = le, d[ri] = 0, q[ri++] = r;
        if(!v[r = (cr * 10 + 1) % n])
            v[r] = 1, p[ri] = le, d[ri] = 1, q[ri++] = r;
        ++le;
    }
    return -1;
}

void print(int k)
{
    if(p[k] >= 0) print(p[k]);
    printf("%d", d[k]);
}

int main()
{
    while(scanf("%d", &n), n)
    {
        print(bfs());
        puts("");
    }
    return 0;
}

Find The Multiple

Description

Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.

Input

The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.

Output

For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.

Sample Input

2
6
19
0

Sample Output

10
100100100100100100
111111111111111111


POJ 1426 Find The Multiple(BFS 同余模定理)

标签:bfs   poj   acm   

原文地址:http://blog.csdn.net/acvay/article/details/44813589

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!