码迷,mamicode.com
首页 > 其他好文 > 详细

判断两条直线的位置关系 POJ 1269 Intersecting Lines

时间:2015-04-02 15:01:43      阅读:161      评论:0      收藏:0      [点我收藏+]

标签:

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交。 那给定两条直线怎么判断他们的位置关系呢。还是用到向量的叉积

例题:POJ 1269

题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点。来判断直线L1和L2的关系

这三种关系一个一个来看:

1. 共线。 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上。所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关系,同理判断p4与p1p2的关系。

2. 平行。 如果两条直线平行的话,分别找出直线L1和L2的向量,那么向量的叉积等于0。其中L1的向量是 p2-p1, L2的向量是p4-p3

3. 相交。 这种情况是最复杂的一中情况,不过有了向量这一工具也不复杂了。

假设p0(x0, y0)是两条直线的交点,那么

p0p1×p2p0=0

p0p3×p4p0=0   (p0p1表示向量p0p1)

将p0代入之后结果得到方程组

x0*(y2-y1) + y0*(x1 - x2) + x2*y1 - x1*y2 = 0

x0*(y4-y3) + y0*(x3 - x4) + x4*y3 - x3*y4 = 0

这是典型的一元二次方程组,联立可得到x和y,

对于普通的二元一次方程组

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

的解为

x = (b1*c2 - b2*c1) / (b2*a1 - b1 * a2)

y = (a1*c2 - c1*a2) / (a2*b1 - a1 * b2)

所以最后可得出x和y也就是让求的交点坐标。代码如下

技术分享
/*************************************************************************
    > File Name: poj_1269_chaji.cpp
    > Author: 
    > Mail: 
    > Created Time: 2015年04月01日 星期三 21时44分32秒
 ************************************************************************/

#include<iostream>
#include <cstdio>
using namespace std;
struct point{
    int x, y;
};
point p1, p2, p3, p4;
int get_direction(point a, point b, point c)//判断点与直线的关系
{
    point t1, t2;
    t1.x = c.x - a.x; t1.y = c.y - a.y;
    t2.x = b.x - a.x; t2.y = b.y - a.y;
    return (t1.x * t2.y - t1.y * t2.x);
}
int on_line(point a, point b)//判断是否共线
{
    return (a.x * b.y - a.y * b.x);
}
int main()
{
    int n;
    scanf("%d", &n);
    puts("INTERSECTING LINES OUTPUT");
    while (n--)
    {
        scanf("%d %d %d %d %d %d %d %d", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y, &p4.x, &p4.y);
        if (get_direction(p1, p2, p3) == 0 && get_direction(p1, p2, p4) == 0)
        {
            printf("LINE\n");
            continue;
        }
        point v1, v2;
        v1.x = p2.x - p1.x; v1.y = p2.y - p1.y;//直线1的向量
        v2.x = p4.x - p3.x; v2.y = p4.y - p3.y;//直线2的向量
        if (on_line(v1, v2) == 0)
        {
            printf("NONE\n");
            continue;
        }
        double a1, b1, c1, a2, b2, c2, x, y;//求交点过程
        a1 = (p2.y - p1.y) * 1.0;
        b1 = (p1.x - p2.x) * 1.0;
        c1 = (p2.x * p1.y - p1.x * p2.y) * 1.0;
        a2 = (p4.y - p3.y) * 1.0;
        b2 = (p3.x - p4.x) * 1.0;
        c2 = (p3.y * p4.x - p4.y * p3.x) * 1.0;
        x = (b1 * c2 - b2 * c1) / (b2 * a1 - b1 * a2);
        y = (a1 * c2 - c1 * a2) / (a2 * b1 - a1 * b2);
        printf("POINT %.2f %.2f\n", x, y);
    }
    puts("END OF OUTPUT");
    return 0;
}
View Code

 

判断两条直线的位置关系 POJ 1269 Intersecting Lines

标签:

原文地址:http://www.cnblogs.com/Howe-Young/p/4386773.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!