problem:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
 in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Array Dynamic Programmingthinking:
(1)blog.csdn.net/hustyangju/article/details/44829339 讨论了只能使用DP法
(2)加了条件限制,则DP算法也要修改:
1、边界条件要改变,一旦出现1,则随后的边界条件全部为0
2、矩阵中间出现1,则该位置的路径数置为0
code:
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
    vector<vector<int> >::const_iterator con_it=obstacleGrid.begin();
    int m=obstacleGrid.size();
    int n=(*con_it).size();
    vector<int> tmp(n,0);
    vector<vector<int> > a(m,tmp);
     bool flag=true;
    for(int i=0;i<m;i++)  //边界条件
    {
        if(obstacleGrid[i][0]==0 && flag)
            a[i][0]=1;
        else
        {
            a[i][0]=0;
            flag=false;
        }
    }
    flag=true;
    for(int j=0;j<n;j++) //边界条件
    {
        if(obstacleGrid[0][j]==0 && flag)
            a[0][j]=1;
        else
        {
            a[0][j]=0;
            flag=false;
        }
    }
    for(int i = 1; i < m; i++)  
        for(int j = 1; j < n; j++)  
        {
            if(obstacleGrid[i][j]==1)  //出现障碍物,置0
                a[i][j]=0;
            else
                a[i][j] = a[i-1][j] + a[i][j-1];
        }
    return a[m-1][n-1];    
    }
};leetcode || 63、Unique Paths II
原文地址:http://blog.csdn.net/hustyangju/article/details/44832173