官方网站:https://ece.uwaterloo.ca/~z70wang/research/ssim/
1、SSIM
structural similarity index
经常用到图像处理中,特别在图像去噪处理中在图像相似度评价上全面超越SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)。
作为结构相似性理论的实现,结构相似度指数从图像组成的角度将结构信息定义为独立于亮度、对比度的,反映场景中物体结构的属性,并将失真建模为亮度、对比度和结构三个不同因素的组合。用均值作为亮度的估计,标准差作为对比度的估计,协方差作为结构相似程度的度量。
2.峰值信噪比(PSNR)
峰值信噪比(PSNR)是最普遍,最广泛使用的评鉴画质的客观量测法,PSNR的单位为dB。所以PSNR值越大,就代表失真越少
PSNR=10*log10((2^n-1)^2/MSE),MSE是原图像与处理图像之间均方误差。
源代码:
function s=csnr(A,B,row,col)%%峰值信噪比(PSNR)是最普遍,最广泛使用的评鉴画质的客观量测法,PSNR的单位为dB。所以PSNR值越大,就代表失真越少 %%PSNR=10*log10((2^n-1)^2/MSE),MSE是原图像与处理图像之间均方误差。 %%row和col表示图像的边界像素数,A表示元图像,B表示处理后图像,返回值是性噪比 [n,m,ch]=size(A); if ch==1 %%二维灰度图像 e=A-B; e=e(row+1:n-row,col+1:m-col); me=mean(mean(e.^2)); %%每个元素平方后,先求每列的均值,再求向量的均值,结果相当于求每个元素平方后的均值,即均方误差 s=10*log10(255^2/me); else %%表示二维彩色图像,具有三个通道,相当于有三层二维灰度图像,计算PSNR时每层分别进行计算 e=A-B; e=e(row+1:n-row,col+1:m-col,:); e1=e(:,:,1);e2=e(:,:,2);e3=e(:,:,3); me1=mean(mean(e1.^2)); %R me2=mean(mean(e2.^2)); %G me3=mean(mean(e3.^2)); %B s(1)=10*log10(255^2/me1); s(2)=10*log10(255^2/me2); s(3)=10*log10(255^2/me3); end return;
function ssim = cal_ssim( im1, im2, b_row, b_col ) [h w] = size( im1 ); ssim = ssim_index( im1( b_row+1:h-b_row, b_col+1:w-b_col ), im2( b_row+1:h-b_row, b_col+1:w-b_col ) ); return; function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author was with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University, USA. He is %currently with Department of Electrical and Computer Engineering, %University of Waterloo, Canada. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % 是一个计算两幅图像结构相似性指数SSIM的算法 %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 4, Apr. 2004. % %Kindly report any suggestions or corrections to zhouwang@ieee.org % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 | nargin > 5) mssim = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) mssim = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) | (N < 11)) mssim = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) | (N < 11)) mssim = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) mssim = -Inf; ssim_map = -Inf; return; end else mssim = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) mssim = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) mssim = -Inf; ssim_map = -Inf; return; end else mssim = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) mssim = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 | K(2) < 0) mssim = -Inf; ssim_map = -Inf; return; end else mssim = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
衡量两幅图像相似度的指标SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)SSIM(structural similarity in
原文地址:http://blog.csdn.net/u013467442/article/details/44857657