标签:
2 2 3 0 0 0 0 2 3 0 0 5 0
Case #1: 15.70796 Case #2: 2.25078
经分析可得:
两个圆环的相交面积 = 圆环1外圆和圆环2外圆的相交面积 - 圆环1外圆和圆环2内圆的相交面积 - 圆环1内圆和圆环2外圆的相交面积 + 圆环1内圆和圆环2内圆的相交面积。
#include <cstdio> #include <cmath> using namespace std; #define PI acos(-1.0) //定义PI struct Circle { // 定义圆 double x, y; double r; }; struct Ring { // 定义圆环 double x, y; double R, r; }; struct Get_Intersection_RingAndRing { //求圆心距,即两个圆心之间的距离 double get_dis(double x1, double y1, double x2, double y2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } // 求两圆的相交面积 double get_CircleIntersectionArea(Circle c1, Circle c2) { double dis = get_dis(c1.x, c1.y, c2.x, c2.y); // 圆心距大于半径和,两圆相交面积为0 if(dis >= c1.r + c2.r) return 0; double min_r = c1.r < c2.r ? c1.r : c2.r; double max_r = c1.r > c2.r ? c1.r : c2.r; if(min_r + dis <= max_r) //圆心距小于半径之差,两圆包含关系 return PI * min_r * min_r; double a = acos((c1.r * c1.r + dis * dis - c2.r * c2.r) / 2 / c1.r / dis); double b = acos((c2.r * c2.r + dis * dis - c1.r * c1.r) / 2 / c2.r / dis); double area1 = a * c1.r * c1.r; //第一个圆中扇形的面积, 弧长L=a*c1.r,面积等于0.5*L*c1.r double area2 = b * c2.r * c2.r; //第二个圆中扇形的面积 double ans = area1 + area2; //两个扇形的面积和等于四边形的面积加上两圆相交的面积 double area_qua = sin(a) * c1.r * dis; //四边形的面积 ans -= area_qua; return ans; } //求圆环和圆环的相交面积 double Get_IntersectionArea(Ring r1, Ring r2) { Circle a1, a2, b1, b2; a1.x = r1.x, a1.y = r1.y, a1.r = r1.r; a2.x = r1.x, a2.y = r1.y, a2.r = r1.R; b1.x = r2.x, b1.y = r2.y, b1.r = r2.r; b2.x = r2.x, b2.y = r2.y, b2.r = r2.R; return get_CircleIntersectionArea(a2, b2) - get_CircleIntersectionArea(a1, b2) - get_CircleIntersectionArea(a2, b1) + get_CircleIntersectionArea(a1, b1); } }; int main() { int T; Ring r1, r2; Get_Intersection_RingAndRing x; scanf("%d", &T); for(int cas = 1; cas <= T; cas++) { scanf("%lf%lf", &r1.r, &r1.R); r2.r = r1.r, r2.R = r1.R; scanf("%lf%lf%lf%lf", &r1.x, &r1.y, &r2.x, &r2.y); printf("Case #%d: %.5lf\n", cas, x.Get_IntersectionArea(r1, r2)); } return 0; }
标签:
原文地址:http://blog.csdn.net/lyhvoyage/article/details/44872561