Hadoop简介:
组件:
common:公共组件
hdfs:分布式文件系统
yarn:运行环境
mapreduce:mr计算模型
生态系统:
Ambari:操作界面
avro:通用的序列化机制、与语言无关
cassandra:数据库
chukwa:数据收集系统
hbase:分布式大表数据库
hive:基于sql的分析系统
matout:机器学习算法库
pig:脚本语言
spark:快速通用的计算引擎,主要用于迭代计算
tez:数据流框架
zookeeper:高性能的协调服务
海量数据分析:
HDFS
hadoop生态系统分布式文件系统,用来解决大数据存储问题。
hdfs是在本地文件系统之上抽象出的文件系统,提供统一的访问接口(目录树),实际的文件经过切分和负载均衡算法之后,存储在本地的文件系统中,通过一个主节点(Namenode)统一管理。
为了提高数据存储的可靠性,文件的block会被存储多个副本(默认3个)第一个在本机,第二个在本机所在地同一个机架上,第三个在不同的机架上。
文件系统:提供一套统一的访问接口,屏蔽底层实现细节的系统。
hadoop目录结构:
bin:可执行脚本
etc:系统配置
lib:本地库
sbin:系统的可执行脚本
share:共享目录,存放的jar包
hdfs文件操作:
hdfs文件存储
原文地址:http://blog.csdn.net/jinyingone/article/details/44886743