标签:
题目链接:点击打开链接
题意:
给出逆序数的值,求原序列(一个1-N的排列)
1, 2, 0, 1, 0 表示1的逆序数是1,2的逆序数是2,3的逆序数是0···
思路:
从最后一个数开始插,每次插到当前序列的第a[i]个数。。
splay模拟
== 这个方法比较直(wu)观(nao),别的方法并没有想出来。。
#include <cstdio> #include <iostream> #include <cstring> #include <queue> #include <algorithm> #include <map> #include <cmath> template <class T> inline bool rd(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; while(c!='-'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='-')?-1:1; ret=(c=='-')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if(x>9) pt(x/10); putchar(x%10+'0'); } using namespace std; inline int Mid(int a,int b){return (a+b)>>1;} #define N 100010 #define L(x) tree[x].ch[0] #define R(x) tree[x].ch[1] #define Siz(x) tree[x].siz #define Father(x) tree[x].fa #define Max(x) tree[x].max #define Val(x) tree[x].val #define Pt(x) tree[x].pt() struct node{ int ch[2], siz, fa; int max, val; void pt(){printf("val:%d max:%d siz:%d fa:%d child{%d,%d}\n", val,max,siz,fa,ch[0],ch[1]);} }tree[N*2]; int tot, root; void Newnode(int &id, int val, int fa, int siz = 1){ id = ++tot; L(id) = R(id) = 0; Father(id) = fa; Siz(id) = siz; Max(id) = Val(id) = val; } void push_up(int id){ Siz(id) = Siz(L(id)) + Siz(R(id)) +1; Max(id) = max(Max(R(id)), Max(L(id))); Max(id) = max(Val(id), Max(id)); } void push_down(int id){} void Rotate(int id, int kind){ int y = Father(id); push_down(y); push_down(id); //here tree[y].ch[kind^1] = tree[id].ch[kind]; Father(tree[id].ch[kind]) = y; if(Father(y)) tree[Father(y)].ch[R(Father(y))==y] = id; Father(id) = Father(y); Father(y) = id; tree[id].ch[kind] = y; push_up(y); } void splay(int id, int goal){ push_down(id); while(Father(id) != goal){ int y = Father(id); if(Father(y) == goal) Rotate(id, L(y)==id); else { int kind = L(Father(y)) == y; if(tree[y].ch[kind] == id) { Rotate(id, kind^1); Rotate(id, kind); } else { Rotate(y, kind); Rotate(id,kind); } } } push_up(id); if(goal == 0)root = id; } int Get_kth(int kth, int sor){//找到在sor后面的第k个数 push_down(sor); int id = sor; while(Siz(L(id)) != kth){ if(Siz(L(id)) > kth) id = L(id); else { kth -= (Siz(L(id))+1); id = R(id); } push_down(id); } return id; } void init(){ Father(0) = L(0) = R(0) = Siz(0) = 0; Max(0) = 0; tot = 0; Newnode(root, 0, 0); Newnode(R(root), 0, root); push_up(root); } void debug(int x){ printf("%d:\n", x); Pt(x); if(L(x)){ printf("L:"); debug(L(x)); printf("return to %d:\n", x); } if(R(x)){ printf("R:"); debug(R(x)); printf("return to %d:\n", x); } } void insert(int pos, int val){ splay(1, 0); int u = Get_kth(pos, 1); // if(pos == 2){cout<<"=="; debug(root);} int v = Get_kth(pos+1, 1); // printf("在(%d,%d)之间:", u, v); Pt(u); Pt(v); puts("*****"); splay(u, 0); splay(v, root); // if(pos == 2){cout<<"=="; debug(root);} Newnode(L(v), val, v); push_up(v); push_up(u); // printf("[%d,%d]\n", u, v); } int n; int a[100005]; vector<int>G; void dfs(int u){ if(L(u)) dfs(L(u)); G.push_back(Val(u)); if(R(u)) dfs(R(u)); } int main() { while(cin>>n){ init(); // puts("init debug begin:");debug(root); for(int i = 1; i <= n; i++)rd(a[i]); bool ok = true; for(int i = n; i; i--){ if(a[i]>n-i){ok = false; break; } insert(a[i] , i); // printf(" %d debug begin:", i);debug(root); } if(false == ok){ puts("No solution");continue; } G.clear(); dfs(root); for(int i = 1; i < G.size() -1; i++) printf("%d%c", G[i], i+2==(int)G.size()?'\n':' '); } return 0; } /* 1 7 0 1 1 1 0 4 1 */
CSU 1555 Inversion Sequence 给出逆序数求排列 splay
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/44892147