一:unique Path
题目:
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
链接:https://leetcode.com/problems/unique-paths/
分析:此题很明显是动态规划问题,用F[m][n],其中F[i][j]表示在(i,j)位置时的最大方案数,他就等于F[i+1][j]+F[i][j+1].
代码:
class Solution { public: int uniquePaths(int m, int n) { int **path = new int*[m]; for(int i = 0; i < m; i++){ path[i] = new int[n]; memset(path[i], 0, sizeof(int)*n); } for(int i = 0; i < m; i++) // 初始化 path[i][n-1] = 1; for(int i = 0; i < n; i++) path[m-1][i] = 1; for(int i = m-2; i >=0; i--){ for(int j = n-2; j >= 0; j--){ path[i][j] = path[i+1][j] + path[i][j+1]; // DP算法 } } int pathes = path[0][0]; for(int i = 0; i < m; i++) delete []path[i]; delete []path; return pathes; } };
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
链接:https://leetcode.com/problems/unique-paths-ii/
分析:此题就是在上题中增加了一些障碍物,这对初始化会带来一定影响。
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int m = obstacleGrid.size(); int n = obstacleGrid[0].size(); if(obstacleGrid[m-1][n-1] || obstacleGrid[0][0]) return 0; int **path = new int*[m]; for(int i = 0; i < m; i++){ path[i] = new int[n]; memset(path[i], 0, sizeof(int)*n); } path[m-1][n-1] = 1; for(int i = m-2; i >= 0; i--){ // 有障碍物的初始化 对最后一行最后一列初始化 if(obstacleGrid[i][n-1]) path[i][n-1] = 0; else path[i][n-1] = path[i+1][n-1]; } for(int i = n-2; i >= 0; i--) if(obstacleGrid[m-1][i]) path[m-1][i] = 0; else path[m-1][i] = path[m-1][i+1]; for(int i = m-2; i >=0; i--){ for(int j = n-2; j >= 0; j--){ if(obstacleGrid[i][j]) path[i][j] = 0; else path[i][j] = path[i+1][j] + path[i][j+1]; // DP算法 } } int pathes = path[0][0]; for(int i = 0; i < m; i++) delete []path[i]; delete []path; return pathes; } };三:Triangle
题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
分析:用F[i]表示位置为i时的最小和,他就=triangle[i]+min(F[i], F[i+1]) 典型的DP
代码:
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int lastCols = triangle[triangle.size()-1].size(); int *f = new int[lastCols]; for(int i = 0; i < lastCols; i++){ f[i] = triangle[triangle.size()-1][i]; // 初始化 } for(int i = triangle.size()-2; i >=0; i--){ for(int j = 0; j < triangle[i].size(); j++){ f[j] = triangle[i][j] + min(f[j], f[j+1]); // 递归式 } } int result = f[0]; delete []f; return result; } };
LeetCode 62/63/120 Unique PathsI/II Triangle--DP
原文地址:http://blog.csdn.net/lu597203933/article/details/44902585