Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are in the world of mathematics to solve the great "MonkeyBanana Problem". It states that, a monkey enters into a diamond shaped twodimensional array and can jump in any of the adjacent cellsdown fromits current position (see figure). While moving from one cell to another, themonkey eats all the bananas kept in that cell. The monkey enters into the arrayfrom the upper part and goes out through the lower part. Find the maximumnumber of bananas the monkey can eat.
Input starts with an integer T (≤ 50),denoting the number of test cases.
Every case starts with an integer N (1 ≤ N ≤100). It denotes that, there will be2*N - 1 rows. The ith(1 ≤ i ≤ N) line of nextN lines contains exactlyinumbers. Then there will beN - 1 lines. The jth (1≤ j < N) line containsN - j integers. Each number isgreater than zero and less than 215.
For each case, print the case number and maximum number ofbananas eaten by the monkey.
Sample Input |
Output for Sample Input |
2 4 7 6 4 2 5 10 9 8 12 2 2 12 7 8 2 10 2 1 2 3 1 |
Case 1: 63 Case 2: 5 |
Dataset is huge, use faster I/O methods.
#include <cstdio> #include <algorithm> using namespace std; int a[102][102],dp[102][102]; int main() { int i,j,t,n,cnt=0; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i=1;i<=n;i++) for(j=1;j<=i;j++) scanf("%d",&a[i][j]); dp[1][1]=a[1][1]; for(i=2;i<=n;i++) for(j=1;j<=i;j++) { if(j==1) dp[i][j]=a[i][j]+dp[i-1][j]; else if(j==n) dp[i][j]=a[i][j]+dp[i-1][j-1]; else dp[i][j]=a[i][j]+max(dp[i-1][j-1],dp[i-1][j]); } for(i=n-1;i>=1;i--) for(j=1;j<=i;j++) scanf("%d",&a[i][j]); for(i=n-1;i>=1;i--) for(j=1;j<=i;j++) dp[i][j]=a[i][j]+max(dp[i+1][j],dp[i+1][j+1]); printf("Case %d: %d\n",++cnt,dp[1][1]); } return 0; }
LightOJ 1004 Monkey Banana Problem (DP 数字三角形)
原文地址:http://blog.csdn.net/criminalcode/article/details/44915727