标签:
什么是动态规划(DP)?问题可以表现为多阶段决策
在实际中,人们常常遇到 这样一类决策问题:即由于过程的特殊性,可以将决策的全过程依据时间或空间划分若干个联系的阶段。而在各阶段中,人们都需要作出方案的选择,我们称之为决策,并且当一个阶段的决策之后,常常影响到下一个阶段的决策,从而影响整个过程的活动。这样,各个阶段所确定的决策就构成一个决策序列,常称之为策略。由于各个阶段可供选择的决策往往不止一个,因而就可能有许多决策以供选择,这些
可供选择的策略构成一个集合,我们称之为允许策略集合(简称策略集合)。每个策略都相应地确定一种活动的效果,我们假定这个效果可以用数量来衡量。由于不同的策略常常导致不同的效果,因此,如何在允许策略集合中选择一个策略,使其在预定的标准下达到最好的效果,常常是人们所关心的问题,我们称这样的策略为最优策略,这类问题就称为多阶段决策问题。
一般来说,一个经典的动态规划算法时自底向上的(从较小问题的解,由交叠性质,逐步决策处较大问题的解),它需要解出给定问题的所有较小子问题。动态规划的一个变种是试图避免对不必要的子问题求解。如果采用自顶向下的递归来解,那么就避免了不必要子问题的求解(相对于动态规划表现出优势),然而递归又会导致对同一个子问题多次求解(相对于动态规划表现出劣势),所以将递归和动态规划结合起来,就可以设计一种基于记忆功能的从顶向下的动态规划算法。
那么遇到问题如何用动态规划去解决呢?根据上面的分析我们可以按照下面的步骤去考虑:
1、构造问题所对应的过程。
2、思考过程的最后一个步骤,看看有哪些选择情况。
3、找到最后一步的子问题,确保符合“子问题重叠”,把子问题中不相同的地方设置为参数。
4、使得子问题符合“最优子结构”。
5、找到边界,考虑边界的各种处理方式。
6、确保满足“子问题独立”,一般而言,如果我们是在多个子问题中选择一个作为实施方案,而不会同时实施多个方案,那么子问题就是独立的。
7、考虑如何做备忘录。
8、分析所需时间是否满足要求。
9、写出转移方程式。
题目:买书
有一书店引进了一套书,共有3卷,每卷书定价是60元,书店为了搞促销,推出一个活动,活动如下:
如果单独购买其中一卷,那么可以打9.5折。
如果同时购买两卷不同的,那么可以打9折。
如果同时购买三卷不同的,那么可以打8.5折。
如果小明希望购买第1卷x本,第2卷y本,第3卷z本,那么至少需要多少钱呢?(x、y、z为三个已知整数)。
当然,这道题完全可以不用动态规划来解,但是现在我们是要学习动态规划,因此请想想如何用动态规划来做?
解析:
1、过程为一次一次的购买,每一次购买也许只买一本(这有三种方案),或者买两本(这也有三种方案),或者三本一起买(这有一种方案),最后直到买完所有需要的书。
2、最后一步我必然会在7种购买方案中选择一种,因此我要在7种购买方案中选择一个最佳情况。
3、子问题是,我选择了某个方案后,如何使得购买剩余的书能用最少的钱?并且这个选择不会使得剩余的书为负数。母问题和子问题都是给定三卷书的购买量,求最少需要用的钱,所以有“子问题重叠”,问题中三个购买量设置为参数,分别为i、j、k。
4、的确符合。
5、边界是一次购买就可以买完所有的书,处理方式请读者自己考虑。
6、每次选择最多有7种方案,并且不会同时实施其中多种,因此方案的选择互不影响,所以有“子问题独立”。
7、我可以用minMoney[i][j][k]来保存购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱。
8、共有x * y * z 个问题,每个问题面对7种选择,时间为:O( x * y * z * 7) = O( x * y * z )。
9、用函数MinMoney(i,j,k)来表示购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱,那么有:
MinMoney(i,j,k)=min(s1,s2,s3,s4,s5,s6,s7),其中s1,s2,s3,s4,s5,s6,s7分别为对应的7种方案使用的最少金钱:
s1 = 60 * 0.95 + MinMoney(i-1,j,k)
s2 = 60 * 0.95 + MinMoney(i,j-1,k)
s3 = 60 * 0.95 + MinMoney(i,j,k-1)
s4 = (60 + 60) * 0.9 + MinMoney(i-1,j-1,k)
s5 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1)
s6 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1)
s7 = (60 + 60 + 60) * 0.85 + MinMoney(i-1,j-1,k-1)
标签:
原文地址:http://blog.csdn.net/u014082714/article/details/44904111