求模运算与求余运算不同。“模”是“Mod”的音译,模运算多应用于程序编写中。 Mod的含义为求余。模运算在
数论和程序设计中都有着广泛的应用,从奇
偶数的判别到素数的判别,从模
幂运算到
最大公约数的求法,从孙子问题到
凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。
取余运算区别
对于整型数a,b来说,取模运算或者求余运算的方法都是:
1.求 整数商: c = a/b;
2.计算模或者余数: r = a - c*b.
求模运算和求余运算在第一步不同: 取余运算在取c的值时,向0 方向舍入(fix()函数);而取模运算在计算c的值时,向负无穷方向舍入(floor()函数)。
例如:计算-7 Mod 4
那么:a = -7;b = 4;
第一步:求整数商c,如进行求模运算c = -2(向负无穷方向舍入),求余c = -1(向0方向舍入);
第二步:计算模和余数的公式相同,但因c的值不同,求模时r = 1,求余时r = -3。
归纳:当a和b符号一致时,求模运算和求余运算所得的c的值一致,因此结果一致。
当符号不一致时,结果不一样。求模运算结果的符号和b一致,求余运算结果的符号和a一致。
另外各个环境下%运算符的含义不同,比如c/c++,java 为取余,而python则为取模。