标签:
It‘s easy for ACMer to calculate A^X mod P. Now given seven integers n, A, K, a, b, m, P, and a function f(x) which defined as following.
f(x) = K, x = 1
f(x) = (a*f(x-1) + b)%m , x > 1
Now, Your task is to calculate
( A^(f(1)) + A^(f(2)) + A^(f(3)) + ...... + A^(f(n)) ) modular P.
1 <= n <= 10^6
0 <= A, K, a, b <= 10^9
1 <= m, P <= 10^9
c is the case number start from 1.
ans is the answer of this problem.
23 2 1 1 1 100 1003 15 123 2 3 1000 107
Case #1: 14Case #2: 63
题意:求A^X mod P的和。
PS:妥妥的给跪了,用快速幂肯定不行,超时,然后用了一下快速幂+快速乘法还是超时,一直优化优化也优化好,只好去看了下题解,真心给跪了。
思路:这个用到了分解的方法,将A^f中的 f分解为 i * k + j的形式 。保存在数组中,用的时候直接找就好了。
#include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <sstream> #include <algorithm> #include <set> #include <queue> #include <stack> #include <map> using namespace std; typedef long long LL; const int inf=0x3f3f3f3f; const double pi= acos(-1.0); const int maxn=33333; LL X[maxn+10],Y[maxn+10]; LL n,A,K,a,b,m,P; void Init() { int i; X[0]=1; for(i=1;i<=maxn;i++){ X[i]=(X[i-1]*A)%P; } LL tmp=X[maxn]; Y[0]=1; for(i=1;i<=maxn;i++){ Y[i]=(Y[i-1]*tmp)%P; } } void Solve(int icase) { int i; LL fx=K; LL res=0; for(i=1;i<=n;i++){ res=(res+(Y[fx/maxn]*X[fx%maxn])%P)%P; fx=(a*fx+b)%m; } printf("Case #%d: %lld\n",icase,res); } int main() { int T,icase; scanf("%d",&T); for(icase=1;icase<=T;icase++){ scanf("%lld %lld %lld %lld %lld %lld %lld",&n,&A,&K,&a,&b,&m,&P); Init(); Solve(icase); } }
标签:
原文地址:http://blog.csdn.net/u013486414/article/details/44917247