码迷,mamicode.com
首页 > 其他好文 > 详细

斯坦福机器学习实现与分析之一(前言)

时间:2015-04-08 12:27:20      阅读:109      评论:0      收藏:0      [点我收藏+]

标签:

  自去年底开始学习Andrew Ng的机器学习公开课,欲依其课件试着实现部分算法以加深理解,然在此过程中遇到部分问题,或为程序实现,或为算法理解。故而准备将此课程整理,并记录自己的理解,或对或错可共同讨论。

  此课程主要包括三部分:监督学习算法、无监督学习算法以及学习理论。监督学习部分讲了回归、生成学习算法与SVM;无监督学习则讲了K-means,MOG,EM,PCA,ICA以及增强学习等算法;学习理论则是讲解算法的评估,模型与特征的选择等方法。此处课程整理的顺序将与原讲义相同。

  另外,考虑此处主要目的在于分析和理解算法,将主要采用matlab来实现,以方便矩阵和向量运算以及结果显示等。

  线性回归

斯坦福机器学习实现与分析之一(前言)

标签:

原文地址:http://www.cnblogs.com/jcchen1987/p/4398662.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!