标签:
A message containing letters from A-Z is being encoded to numbers using the following mapping:
‘A‘ -> 1 ‘B‘ -> 2 ... ‘Z‘ -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding "12" is 2.
思路:
这是一个动态规划的问题。考察输入串中第i,i-1,i-2的三个字符。设decode_ways[i]为到第i个字符为止,找到的解码个数,s[i]为输入串中第i个字符。那么s[i-1]和s[i]可以有几种可能:
由此写出状态转移方程和代码。
状态转移方程:
1.如果S[i] == ‘0‘,如果S[i-1]存在且为‘1‘或者‘2‘,F[i] = F[i-1],否则无解;
2.如果S[i] != ‘0‘
如果S[i-1]==‘1‘,F[i] = F[i-1] + F[i-2](例如"xxxxx221",可以是"xxxxx22"+"1",也可以是"xxxx2"+"21");
如果S[i-1]==‘2‘,当S[i] <= ‘6‘时,F[i] = F[i-1] + F[i-2] (最大的Z为"26","27""28""29"不存在),当S[i] > ‘6‘时,F[i] = F[i-1] (例如"xxxxxx28",只能是"xxxxxx2" + "8")。
代码:
class Solution { public: int numDecodings(string s) { int n = s.length(); if (n<1) { return 0; } vector<int> dp(n+1, 0); dp[0] = 1; for (int i=1; i<n+1; i++) { if (i==1) { if (s[i-1]==‘0‘) { return 0; } else { dp[i] = 1; } } else { if (s[i-1]==‘0‘) { if (s[i-2]==‘1‘ || s[i-2]==‘2‘) { dp[i] = dp[i-2]; } else { return 0; } } else { if (s[i-2]==‘1‘ || (s[i-2]==‘2‘ && s[i-1]<=‘6‘)) { dp[i] = dp[i-1]+dp[i-2]; } else { dp[i] = dp[i-1]; } } } } return dp[n]; } };
参考:
1. http://blog.csdn.net/magisu/article/details/16942907
2. http://www.tuicool.com/articles/JVrMBr
标签:
原文地址:http://www.cnblogs.com/jellyang/p/4401776.html