problem:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
,
return true
.
thinking:
经典二分法的时间复杂度为 log(m)+log(n)=log(m*n)
(1)二分法查找锁定target在矩阵的哪一行
(2)二分法查找target是否在锁定的那一行
code:
二分法:时间复杂度为log(m)+log(n)=log(m*n)
class Solution { public: bool searchMatrix(vector<vector<int> > &matrix, int target) { int m=matrix.size(); int n=matrix[0].size(); int index=binary_search_1(matrix,target,0,m-1); if(index<0 || index>=m) return false; return binary_search_2(matrix[index],target,0,n-1); } protected: int binary_search_1(vector<vector<int> > &matrix, int target, int start, int end) //锁定target所在行 { if(start>=end) return start; int mid=(start+end)/2; if(target>=matrix[mid][0]&&target<matrix[mid+1][0]) return mid; else if(target<matrix[mid][0]) return binary_search_1(matrix,target,start,mid-1); else return binary_search_1(matrix,target,mid+1,end); } bool binary_search_2(vector<int> &a, int target, int start, int end) //在锁定行中查找target { if(start>=end) return a[start]==target; int mid=(start+end)/2; if(a[mid]==target) return true; else if(a[mid]<target) return binary_search_2(a,target,mid+1,end); else return binary_search_2(a,target,start,mid-1); } };
还有一个不错的算法,时间复杂度为O(m+n):
class Solution { public: bool searchMatrix(vector<vector<int> > &matrix, int target) { int i = 0, j = matrix[0].size() - 1; while (i < matrix.size() && j >= 0) { if (target == matrix[i][j]) return true; else if (target < matrix[i][j]) j--; else i++; } return false; } };
leetcode || 74、Search a 2D Matrix
原文地址:http://blog.csdn.net/hustyangju/article/details/44960075