标签:
题目链接:点击打开链接
题意:给定区间[l, r] 询问区间内有多少个数和n互质
思路:
solve(x) 表示[1,x]区间内与n互质的个数,则ans = solve(r)-solve(l-1);
与n互质的个数=所有数-与n不互质的数=所有数-(与n有一个因子-与n有2个因子的+与n有3个因子的)
状压n的因子个数,然后根据上面的公式容斥得到。
#include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> const int inf = 1e8; const double eps = 1e-8; const double pi = acos(-1.0); template <class T> inline bool rd(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; while(c!='-'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='-')?-1:1; ret=(c=='-')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-');x = -x; } if(x>9) pt(x/10); putchar(x%10+'0'); } using namespace std; typedef long long ll; typedef pair<int,int> pii; const int N = 1e5; ll prime[N],primenum;//有primenum个素数 math.h void PRIME(ll Max_Prime){ primenum=0; prime[primenum++]=2; for(ll i=3;i<=Max_Prime;i+=2) for(ll j=0;j<primenum;j++) if(i%prime[j]==0)break; else if(prime[j]>sqrt((double)i) || j==primenum-1) { prime[primenum++]=i; break; } } ll l, r, n; vector<ll>fac; void factor(ll x){ fac.clear(); for(int i = 0; i < primenum && prime[i]*prime[i]<= x; i++) { if(x%prime[i])continue; fac.push_back(prime[i]); while(x%prime[i]==0)x/=prime[i]; } if(x!=1)fac.push_back(x); // cout<<x<<" " ;puts("factor:"); for(int i = 0; i < fac.size(); i++){ // pt(fac[i]); puts("**"); // } } ll solve(ll x){//计算与x有2个及以上的因子个数 if(x<=0)return 0; if(x == 1)return 1; ll sum = 0, siz = (int)fac.size(); for(int i = 1; i < (1<<siz); i++) { ll lcm = 1, one = 0; for(int j = 0; j < siz; j++) if(i & (1<<j)) { lcm *= fac[j]; one++; } if(one&1) sum += x/lcm; else sum -= x/lcm; } return x-sum; } int main(){ PRIME(1e5+10); int T, Cas = 1; rd(T); while(T-->0){ rd(l); rd(r); rd(n); printf("Case #%d: ", Cas++); factor(n); pt(solve(r)-solve(l-1)); puts(""); } return 0; }
HDU 4135 Co-prime 区间内与n互质的个数 容斥(入门
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/44965605