标签:
看了斌神的题解恍然大悟http://www.kuangbin.net/archives/bc36
代码:
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; typedef long long ll; const int MOD = 1000000007; const int N = 200005; int t, n, m, f[N], rf[N]; int pow_mod(int x, int k) { int ans = 1; while (k) { if (k&1) ans = (ll)ans * x % MOD; x = (ll)x * x % MOD; k >>= 1; } return ans; } int C(int n, int m) { return (ll)f[n] * rf[n - m] % MOD * rf[m] % MOD; } int cal(int x, int n, int sum) { if (n == 0) return sum == 0; int ans = 0; for (int i = 0; i * x <= sum && i <= n; i++) { int tmp = (ll)C(n, i) * C(sum - i * x + n - 1, n - 1) % MOD; if (i%2) ans = ((ans - tmp) % MOD + MOD) % MOD; else ans = (ans + tmp) % MOD; } return ans; } int main() { f[0] = 1; for (int i = 1; i < N; i++) f[i] = (ll)f[i - 1] * i % MOD; rf[N - 1] = pow_mod(f[N - 1], MOD - 2); for (int i = N - 2; i >= 0; i--) rf[i] = (ll)rf[i + 1] * (i + 1) % MOD; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); int ans = 0; for (int i = 1; i <= n; i++) ans = (ans + cal(i, m - 1, n - i)) % MOD; printf("%d\n", ans); } return 0; }
标签:
原文地址:http://blog.csdn.net/accelerator_/article/details/44965497