标签:
基本就和网上题解一样的思路,把几种情况判掉blablabla。。就WA了。
然后答案加个EPS就过了。显然这题没有写SPJ。。卡了精度
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; struct Point { double x, y; Point() {} Point(double x, double y) { this->x = x; this->y = y; } void read() { scanf("%lf%lf", &x, &y); } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-8; int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积 double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模 double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角 double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积 double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积 struct Line { Point v, p; Line() {} Line(Point v, Point p) { this->v = v; this->p = p; } Point point(double t) { return v + p * t; } }; //向量旋转 Vector Rotate(Vector A, double rad) { return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); } Vector AngleBisector(Point p, Vector v1, Vector v2){//给定两个向量,求角平分线 double rad = Angle(v1, v2); return Rotate(v1, dcmp(Cross(v1, v2)) * 0.5 * rad); } //判断3点共线 bool LineCoincide(Point p1, Point p2, Point p3) { return dcmp(Cross(p2 - p1, p3 - p1)) == 0; } //判断向量平行 bool LineParallel(Vector v, Vector w) { return Cross(v, w) == 0; } //判断向量垂直 bool LineVertical(Vector v, Vector w) { return Dot(v, w) == 0; } //计算两直线交点,平行,重合要先判断 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } //点到直线距离 double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1, v2)) / Length(v1); } //点到线段距离 double DistanceToSegment(Point P, Point A, Point B) { if (A == B) return Length(P - A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if (dcmp(Dot(v1, v2)) < 0) return Length(v2); else if (dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } //点在直线上的投影点 Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * (Dot(v, P - A) / Dot(v, v)); } //线段相交判定(规范相交) bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } //可以不规范相交 bool SegmentProperIntersection2(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return max(a1.x, a2.x) >= min(b1.x, b2.x) && max(b1.x, b2.x) >= min(a1.x, a2.x) && max(a1.y, a2.y) >= min(b1.y, b2.y) && max(b1.y, b2.y) >= min(a1.y, a2.y) && dcmp(c1) * dcmp(c2) <= 0 && dcmp(c3) * dcmp(c4) <= 0; } //判断点在线段上, 不包含端点 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } //n边形的面积 double PolygonArea(Point *p, int n) { double area = 0; for (int i = 1; i < n - 1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; } int t; Point p[4]; double solve() { if (LineParallel(p[1] - p[0], p[3] - p[2])) return 0.0; if (!SegmentProperIntersection2(p[0], p[1], p[2], p[3])) return 0.0; Point x = GetLineIntersection(p[0], p[1] - p[0], p[2], p[3] - p[2]); if (p[0].y > x.y && p[2].y > x.y) { if ((p[0].x - x.x) * (p[2].x - x.x) > 0) { if (dcmp(fabs(p[0].x - x.x) - fabs(p[2].x - x.x)) >= 0) { Point sb = GetLineIntersection(x, p[0] - x, p[2], Vector(0, 1)); if (sb.y > p[2].y) return 0.0; } } Point tmp = GetLineIntersection(p[0], p[1] - p[0], p[2], Vector(1, 0)); return fabs(Area2(p[2], x, tmp) / 2); } return 0.0; } int main() { scanf("%d", &t); while (t--) { for (int i = 0; i < 4; i++) p[i].read(); if (p[0].y < p[1].y) swap(p[0], p[1]); if (p[2].y < p[3].y) swap(p[2], p[3]); if (p[0].y < p[2].y) { swap(p[0], p[2]); swap(p[1], p[3]); } printf("%.2f\n", solve() + eps); } return 0; }
POJ 2826 An Easy Problem?!(计算几何)
标签:
原文地址:http://blog.csdn.net/accelerator_/article/details/44979065