题目大意:给定一个圆,一堆粒子在里面反射,每个粒子只能撞墙k次,求全程粒子间距离的最小值
每两个粒子之间计算一遍
反射就是把射线沿着切线作镜像变换
随便搞搞咯……
#include <cmath> #include <cstdio> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define M 110 #define EPS 1e-7 #define INF 1e9 using namespace std; typedef long double ld; struct Point{ ld x,y; Point() {} Point(ld _,ld __): x(_),y(__) {} friend istream& operator >> (istream &_,Point &p) { _>>p.x>>p.y; return _; } friend Point operator + (const Point &p1,const Point &p2) { return Point(p1.x+p2.x,p1.y+p2.y); } friend Point operator - (const Point &p1,const Point &p2) { return Point(p1.x-p2.x,p1.y-p2.y); } friend ld operator * (const Point &p1,const Point &p2) { return p1.x*p2.y-p1.y*p2.x; } friend Point operator * (const Point &p,ld rate) { return Point(p.x*rate,p.y*rate); } friend ld Distance(const Point &p1,const Point &p2) { return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ); } }O; struct Line{ Point p,v; Line() {} Line(const Point &_,const Point &__): p(_),v(__) {} friend istream& operator >> (istream &_,Line &l) { cin>>l.p>>l.v; return _; } friend Point Get_Intersection(const Line &l1,const Line &l2)//计算两条直线的交点 { Point u=l1.p-l2.p; ld temp=(l2.v*u)/(l1.v*l2.v); return l1.p+l1.v*temp; } }a[M][M]; int n,k; ld r,ans=INF; ld t[M][M]; ld Quadratic_Equation(ld a,ld b,ld c)//解一元二次方程 { ld re1=( -b+sqrt(b*b-4*a*c) )/2/a; ld re2=( -b-sqrt(b*b-4*a*c) )/2/a; return max(re1,re2); } ld Get_Intersection(const Line &l)//计算直线与圆的交点 { return Quadratic_Equation( l.v.x*l.v.x+l.v.y*l.v.y, 2*(l.p.x*l.v.x+l.p.y*l.v.y), l.p.x*l.p.x+l.p.y*l.p.y-r*r ); } Point Mirror(const Point &p,const Line &l)//求点p关于直线l的镜像 { Point u=Point(l.v.y,-l.v.x); Point intersection=Get_Intersection(Line(p,u),l); return intersection+(intersection-p); } ld Min_Distance(const Line &l1,const Line &l2,ld l,ld r) { ld a=(l1.v.x-l2.v.x)*(l1.v.x-l2.v.x)+(l1.v.y-l2.v.y)*(l1.v.y-l2.v.y); ld b=(l1.p.x-l2.p.x)*(l1.v.x-l2.v.x)+(l1.p.y-l2.p.y)*(l1.v.y-l2.v.y); if(a<EPS) return Distance(l1.p+l1.v*r,l2.p+l2.v*r); ld t=-b/a; if(t>r) t=r; if(t<l) t=l; return Distance(l1.p+l1.v*t,l2.p+l2.v*t); } void Calculate(int x,int y) { int i=1,j=1; ld last=0; while(i<=k&&j<=k) { if(t[x][i]>t[y][j]) swap(x,y),swap(i,j); ans=min(ans,Min_Distance(a[x][i],a[y][j],last,t[x][i]) ); last=t[x][i];i++; } } int main() { int i,j; cin>>O>>r>>n>>k; for(i=1;i<=n;i++) { cin>>a[i][1]; a[i][1].p=a[i][1].p-O; for(j=2;j<=k;j++) { t[i][j-1]=Get_Intersection(a[i][j-1]); Point intersection=a[i][j-1].p+a[i][j-1].v*t[i][j-1]; Point intersection_T=Point(intersection.y,-intersection.x); a[i][j]=Line( Mirror(a[i][j-1].p,Line(intersection,intersection_T)) , Mirror(a[i][j-1].v,Line(Point(0,0),intersection_T)) ) ; } t[i][k]=Get_Intersection(a[i][k]); } for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) Calculate(i,j); cout<<fixed<<setprecision(3)<<ans<<endl; return 0; }
原文地址:http://blog.csdn.net/popoqqq/article/details/44980283