码迷,mamicode.com
首页 > 其他好文 > 详细

Kafka——分布式消息系统

时间:2015-04-11 13:01:35      阅读:163      评论:0      收藏:0      [点我收藏+]

标签:

Kafka——分布式消息系统

 

架构

Apache Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群。

设计目标:

(1) 数据在磁盘上的存取代价为O(1)
(2) 高吞吐率,在普通的服务器上每秒也能处理几十万条消息
(3) 分布式架构,能够对消息分区
(4) 支持将数据并行的加载到hadoop

 

技术分享

 


Kafka实际上是一个消息发布订阅系统。producer向某个topic发布消息,而consumer订阅某个topic的消息,进而一旦有新的关于某个topic的消息,broker会传递给订阅它的所有consumer。 在kafka中,消息是按topic组织的,而每个topic又会分为多个partition,这样便于管理数据和进行负载均衡。同时,它也使用了zookeeper进行负载均衡。
Kafka中主要有三种角色,分别为producer,broker和consumer。

 

Producer

Producer的任务是向broker发送数据。Kafka提供了两种producer接口,一种是low_level接口,使用该接口会向特定的broker的某个topic下的某个partition发送数据;另一种那个是high level接口,该接口支持同步/异步发送数据,基于zookeeper的broker自动识别和负载均衡(基于Partitioner)。
其中,基于zookeeper的broker自动识别值得一说。producer可以通过zookeeper获取可用的broker列表,也可以在zookeeper中注册listener,该listener在以下情况下会被唤醒:

  • 添加一个broker;
  • 删除一个broker;
  • 注册新的topic;
  • broker注册已存在的topic

当producer得知以上时间时,可根据需要采取一定的行动。

 

Broker

Broker采取了多种策略提高数据处理效率,包括sendfile和zero copy等技术。

 

Consumer

consumer的作用是将日志信息加载到中央存储系统上。kafka提供了两种consumer接口,一种是low level的,它维护到某一个broker的连接,并且这个连接是无状态的,即,每次从broker上pull数据时,都要告诉broker数据的偏移量。另一种是high-level 接口,它隐藏了broker的细节,允许consumer从broker上push数据而不必关心网络拓扑结构。更重要的是,对于大部分日志系统而言,consumer已经获取的数据信息都由broker保存,而在kafka中,由consumer自己维护所取数据信息。

 

 

存储结构

 

技术分享

1. kafka 以topic来进行消息管理,每个topic包含多个partition,每个partition对应一个逻辑log,由多个segment组成。
2. 每个segment中存储多条消息(见下图),消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。
3. 每个partition在内存中对应一个index,记录每个segment中的第一条消息偏移。
4. 发布者发到某个topic的消息会被均匀的分布到多个partition上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应partition的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。

技术分享

消费者始终从特定分区顺序地获取消息,如果消费者知道特定消息的偏移量,也就说明消费者已经消费了之前的所有消息。消费者向代理发出异步拉请求,准备字节缓冲区用于消费。每个异步拉请求都包含要消费的消息偏移量。Kafka利用sendfile API高效地从代理的日志段文件中分发字节给消费者。

Kafka代理是无状态的,这意味着消费者必须维护已消费的状态信息。这些信息由消费者自己维护,代理完全不管:

  1. 从代理删除消息变得很棘手,因为代理并不知道消费者是否已经使用了该消息。Kafka创新性地解决了这个问题,它将一个简单的基于时间的SLA应用于保留策略。当消息在代理中超过一定时间后,将会被自动删除。
  2. 这种创新设计有很大的好处,消费者可以故意倒回到老的偏移量再次消费数据。这违反了队列的常见约定,但被证明是许多消费者的基本特征。

 

 

 

API实例

发布接口

producer = new Producer(...);
msg = new Message("your message".getBytes());
set = new MessageSet(msg);
producer.send("topic", set)

发布消息时,kafka client先构造一条消息,并将消息加入到消息集set中(kafka支持批量发布,可以往消息集合中添加多条消息,一次行发布),send消息时,client需指定消息所属的topic。

 

 

订阅接口

streams[] = Consumer.createMessageStreams("topic", 1);
for (message:stream[0]) {
    bytes = message.payload();
    // do sth. with the bytes
}

订阅消息时,kafka client需指定topic以及partition num(每个partition对应一个逻辑日志流,如topic代表某个产品线,partition代表产品线的日志按天切分的结果),client订阅后,就可迭代读取消息,如果没有消息,client会阻塞直到有新的消息发布。consumer可以累积确认接收到的消息,当其确认了某个offset的消息,意味着之前的消息也都已成功接收到,此时broker会更新zookeeper上地offset registry。

 

 

 

 

 

 

 

 

参考文档:

http://dongxicheng.org/search-engine/log-systems/

http://kafka.apache.org/documentation.html#gettingStarted

 

Kafka——分布式消息系统

标签:

原文地址:http://www.cnblogs.com/chenny7/p/4345164.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!