标签:矩阵快速幂 acm
【题目链接】click here~~
【题目大意】
Let‘s define another number sequence, given by the following function:
f(0) = a
f(1) = b
f(n) = f(n-1) + f(n-2), n > 1
When a = 0 and b = 1, this sequence gives the Fibonacci Sequence. Changing the values of a and b , you can get many different sequences. Given the values of a, b, you have to find the last m digits of f(n) .
Input
The first line gives the number of test cases, which is less than 10001. Each test case consists of a single line containing the integers a b n m. The values of a and b range in [0,100], value of n ranges in [0, 1000000000] and value of m ranges in [1, 4].
Input
The first line gives the number of test cases, which is less than 10001. Each test case consists of a single line containing the integers a b n m. The values of a and b range in [0,100], value of n ranges in [0, 1000000000] and value of m ranges in [1, 4].
For each test case, print the last m digits of f(n). However, you should NOT print any leading zero.
4 0 1 11 3 0 1 42 4 0 1 22 4 0 1 21 4
|
89 4296 7711 946 |
类似于fibonacci数列的求法,值得注意的是题目并不是让求简单的F(n),而是求f(n)%f(m),由题目可知,
m ranges in [1, 4].于是定义一个mod数组 const int mod[5]= {0,10,100,1000,10000};每次取模即可
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <math.h> using namespace std; const int mod[5]= {0,10,100,1000,10000}; const int MOD =1e9+7; #define LL long long LL X,Y,N,M,i,j; struct Matrlc { int mapp[2][2]; } ans,base; Matrlc unit= {1,0,0,1}; Matrlc mult(Matrlc a,Matrlc b) { Matrlc c; for(int i=0; i<2; i++) for(int j=0; j<2; j++) { c.mapp[i][j]=0; for(int k=0; k<2; k++) c.mapp[i][j]+=(a.mapp[i][k]*b.mapp[k][j])%mod[M]; c.mapp[i][j]%=mod[M]; } return c; } void pow1(int n) { base.mapp[0][0] =base.mapp[0][1]=base.mapp[1][0]=1; base.mapp[1][1]=0; ans.mapp[0][0] = ans.mapp[1][1] = 1;// ans 初始化为单位矩阵 ans.mapp[0][1] = ans.mapp[1][0] = 0; while(n) { if(n&1) ans=mult(ans,base); base=mult(base,base); n>>=1; } // return ans.mapp[0][1]; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%lld%lld%lld%lld",&X,&Y,&N,&M); if(N==0) return X; else if(N==1) return Y; else { pow1(N-1); LL result=(ans.mapp[0][0]*Y+ans.mapp[0][1]*X)%mod[M]; printf("%lld\n",result); } } return 0; }
【矩阵快速幂】UVA 10698 G - Yet another Number Sequence
标签:矩阵快速幂 acm
原文地址:http://blog.csdn.net/u013050857/article/details/44997891