标签:fzu
Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, x2,…,xm} (each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1, x2,…,xm)]k.
Note that gcd(x1, x2,…,xm) is the greatest common divisor of {x1, x2,…,xm}.
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n, k (1 ≤ n, k ≤ 106). The second line contains n integers a1, a2,…,an (1 ≤ ai ≤ 106).
The sum of values max{ai} for all the test cases does not exceed 2000000.
For each case, if the expectation is E, output a single integer denotes E · (2n - 1) modulo 998244353.
1 5 1 1 2 3 4 5
42
对于N个数的序列,所有非空子集中,其期望是GCD的k次方
输出期望乘以(2^N-1)的值
题目中1的概率是26/31,2的概率是2/32,3,4,5的概率是1/32
期望则是42/32,所以答案为42,也就是说我们的目标是求出期望的分子部分即可
对于N的序列,肯定有2^N-1个非空子集,其中其最大的GCD不会大于原序列的max,那么我们用数组fun来记录其期望
例如题目中的,期望为1的有26个,期望为2的有2个,期望为3,4,5的都只有1个
我们可以拆分来算,首先对于1,期望为1,1的倍数有5个,那么这五个的全部非空子集为2^5-1种,得到S=(2^5-1)*1;
对于2,2的期望应该是2,但是在期望为1的时候所有的子集中,我们重复计算了2的期望,多以我们应该减去重复计算的期望数,现在2的期望应该作1算,那么对于2的倍数,有两个,2,4,其组成的非空子集有2^2-1个,所以得到S+=(2^2-1)*1
对于3,4,5同理;
#include <iostream> #include <stdio.h> #include <string.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <algorithm> using namespace std; #define ls 2*i #define rs 2*i+1 #define up(i,x,y) for(i=x;i<=y;i++) #define down(i,x,y) for(i=x;i>=y;i--) #define mem(a,x) memset(a,x,sizeof(a)) #define w(a) while(a) #define LL long long const double pi = acos(-1.0); #define Len 1000005 #define mod 998244353 const LL inf = 1<<30; LL t,n,k; LL a[Len]; LL two[Len],fun[Len],cnt[Len],vis[Len],maxn; LL power(LL x, LL y) { LL ans = 1; w(y) { if(y&1) ans=(ans*x)%mod; x=(x*x)%mod; y/=2; } return ans; } int main() { LL i,j; scanf("%lld",&t); two[0] = 1; up(i,1,Len-1) two[i] = (two[i-1]*2)%mod; w(t--) { mem(cnt,0); mem(vis,0); scanf("%lld%lld",&n,&k); maxn = 0; up(i,0,n-1) { scanf("%lld",&a[i]); if(!vis[a[i]]) { vis[a[i]] = 1; cnt[a[i]] = 1; } else cnt[a[i]]++; maxn = max(maxn,a[i]); } fun[1] = 1; up(i,2,maxn) fun[i] = power(i,k); up(i,1,maxn) { for(j = i+i; j<=maxn; j+=i) fun[j]=(fun[j]-fun[i])%mod; } LL ans = (two[n]-1)*fun[1]%mod; up(i,2,maxn) { LL cc = 0; for(j = i; j<=maxn; j+=i) { if(vis[j]) cc+=cnt[j]; } LL tem = (two[cc]-1)*fun[i]%mod; ans = (ans+tem)%mod; } printf("%lld\n",(ans+mod)%mod); } return 0; }
标签:fzu
原文地址:http://blog.csdn.net/libin56842/article/details/45016299