标签:
#-*-coding:utf-8-*- import ch ch.set_ch() import matplotlib.pyplot as plt decisionNode = dict(boxstyle = "sawtooth",fc="0.8") leafNode = dict(boxstyle="round4",fc = "0.8") arrow_args = dict(arrowstyle = "<-") #建立标注annotate def plotNode(nodeTxt,centerPt,parentPt,nodeType): # 标注内容 标注位置 标签位置 createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords = 'axes fraction',xytext = centerPt,textcoords='axes fraction',va="center", #标签的格式 箭头的格式 ha = "center",bbox = nodeType,arrowprops=dict(arrowstyle="<-")) def createPlotTemp(): #图名,可以是数字 背景颜色 fig = plt.figure("xihuan",facecolor = 'white') fig.clf()#clear the figure createPlotTemp.ax1 = plt.subplot(111,frameon = False)#产生一个子图,不显示坐标轴,但有坐标 plotNode(U'决策节点',(0.5,0.1),(0.1,0.5),decisionNode) plotNode(U'叶节点', (0.8,0.1),(0.3,0.8),leafNode) plt.show() #计算决策树的叶子节点的数目 def getNumLeafs(myTree): numLeafs = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key])==dict: numLeafs += getNumLeafs(secondDict[key]) else: numLeafs += 1 return numLeafs #计算树的深度 def getTreeDepth(myTree): maxDepth = 0 firstStr = myTree.keys()[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key])==dict: thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1; if thisDepth > maxDepth:maxDepth = thisDepth return maxDepth #生成一棵决策树 def retrieveTree(i): listOfTrees = [{'no surfacing': {0:'no',1:{'flippers': {0: 'no', 1: 'yes'}}}}, {'no surfacing': {0:'no',1:{'flippers': {0:{'head':{0: 'no', 1: 'yes'}}, 1: 'no'}}}} ] return listOfTrees[i] def plotMidText(centrPt,parentPt,txtString): xMid = (parentPt[0]-centrPt[0])/2.0+centrPt[0] yMid = (parentPt[1]-centrPt[1])/2.0+centrPt[1] createPlot.ax1.text(xMid,yMid,txtString) def createPlot(inTree): fig = plt.figure("xihuan",facecolor = 'white') fig.clf() axprops = dict(xticks=[],yticks=[]) createPlot.ax1 = plt.subplot(111,frameon = False,**axprops) plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xoff = -0.5/plotTree.totalW;plotTree.yoff = 1.0;#为了保证根结点标注于标签位置一致 plotTree(inTree,(0.5,1.0),'') plt.show() def plotTree(myTree,parentPt,nodeText): numleafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = myTree.keys()[0] #第一个分类特征 centrPt = (plotTree.xoff + (1.0+float(numleafs))/2.0/plotTree.totalW, plotTree.yoff) plotMidText(centrPt,parentPt,nodeText)#显示文本标签信息,根节点为空 plotNode(firstStr,centrPt,parentPt,decisionNode)#打印标注特征信息 secondDict = myTree[firstStr] plotTree.yoff = plotTree.yoff-1.0/plotTree.totalD#调整下一个子数的Y方向位置 for key in secondDict.keys(): if type(secondDict[key])==dict: plotTree(secondDict[key],centrPt,str(key)) else:#画出结点即可 plotTree.xoff = plotTree.xoff + 1.0/plotTree.totalW plotNode(secondDict[key],(plotTree.xoff,plotTree.yoff),centrPt,leafNode) plotMidText((plotTree.xoff,plotTree.yoff),centrPt,str(key)) plotTree.yoff = plotTree.yoff+1.0/plotTree.totalD#由于递归返回上一层,所以这里返回上层的y分量高度 mytree = retrieveTree(1) #print getTreeDepth(mytree) createPlot(mytree)
标签:
原文地址:http://blog.csdn.net/li_chihang/article/details/45023991