标签:algorithm
(画图什么真辛苦)
强连通分量:
在有向图 G 中,若两个顶点相互可达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。比如上面这幅图( a, b, e ), ( d, c, h ), ( f, g ) 分别为三个 SCC。
tarjan算法伪代码:
该算法由 Robert Tarjan 发明,原论文:Tarjan1972
时间复杂度是深搜的时间复杂度 O( N
+ E )。
BEGIN INTERGER i; PROCEDURE STRONGCONNECT(v); BEGIN LOWLINK(v):= NUMBER(v):= i := i + 1; put v on stack of points; FOR w in the adjacency list of v DO BEGIN IF w is not yet numbered THEN BEGIN comment( v, w ) is a tree arc; STRONGCONNECT(w); LOWLINK(V) := min( LOWLINK(V), LOWLINK(W)); END; ELSE IF NUMBER(W) < NUMBER(V) DO BEGIN comment( v, w ) is a frond or cross-link; if w is on stack of points THEN LOWLINK(v) := min( LOWLINK(v), NUMBER(w)); END; END; if( LOWLINK(v) = NUMBER(v) ) THEN BEGIN comment v is the root of a compont; start new strongly connected compont; WHILE w on top of point stack satisfies NUMBER(w) >= NUMBER(v) DO BEGIN delete w from point stack and put w in current component; END; END; END; i := 0; empty stack of points; FOR w a vertex IF w is not yet numbered THEN STRONGCONNECT(w); END
tarjan算法的执行动态图:
1.建图,每个顶点有三个域,第一个是顶点名,第二个空格是发现该点的时间戳 DFN ,第三个空格是该点能够追溯到的最早的栈中节点的次序号 LOW。
2. 深搜,比如搜索路径为 a --> b --> c --> g --> f, 沿途记下自身的 DFN 和 LOW
3.达到 f 点后,f 点只有一个可达顶点 g, 但 g 不是 f 的后继顶点,且 g 在栈中,则更新 f 的 LOW 变为 g 的发现时间。
4.这时候回到 g 点,但是 f 点还得再栈中,只有发现时间 DFN 与 LOW 相同的顶点才能从栈中弹出(和压在上面的节点一起弹出构成SCC)
5.这时候 g 点的 DFN == LOW
6.于是将 f 和 g 都弹出
7.如虚线所示,他们构成了一个SCC
8.下面就是一样的了,( 图画的好辛苦 )
=========================================================================================
========================================================================================
=========================================================================================
==========================================================================================
==========================================================================================
python代码:
def strongly_connected_components( graph ): dfn_count = [0] result = [] stack = [] low = {} dfn = {} def stronglyconnected( node ): dfn[node] = dfn_count[0] low[node] = dfn_count[0] dfn_count[0] += 1 stack.append( node ) if node not in graph: successors = [] else: successors = graph[node] for successor in successors: if successor not in dfn: stronglyconnected( successor ) low[node] = min( low[successor], low[node] ) elif successor in stack: low[node] = min( low[node], dfn[successor] ) if low[node] == dfn[node]: li = [] item = None while True: item = stack.pop() li.append( item ) if item == node: break result.append( li ) for node in graph: if node not in low: stronglyconnected( node ) return result if __name__ == '__main__': graph = { 'a': [ 'b' ], 'b': [ 'c', 'e', 'f' ], 'c': [ 'g', 'd' ], 'd': [ 'c', 'h' ], 'e': [ 'a', 'f' ], 'f': [ 'g' ], 'g': [ 'f' ], 'h': [ 'g', 'd' ] } print strongly_connected_components( graph )
C++代码:
#include <iostream> #include <vector> #include <string.h> using namespace std; #define MAX_SIZE 100 bool Graph[MAX_SIZE][MAX_SIZE]; int Stack[MAX_SIZE]; bool nodeIsInStack[MAX_SIZE]; int stack_pointer = 0; int Lows[MAX_SIZE]; int Dfns[MAX_SIZE]; int node_num = 0; // 图中节点得到个数 int find_time = 0; // 每个节点的发现时间 int scc_num = 0; // 记录 scc 的个数 void find_scc( int start_node ){ find_time++; Lows[start_node] = Dfns[start_node] = find_time; stack_pointer++; Stack[stack_pointer] = start_node; nodeIsInStack[start_node] = true; for( int end_node = 1; end_node <= node_num; ++end_node ){ //若start_node和end_ndoe之间存在边 if( Graph[start_node][end_node] ){ //若是end_node尚未被访问 if( Dfns[end_node] == 0 ){ find_scc( end_node ); Lows[start_node] = min( Lows[start_node], Lows[end_node] ); } //若end_node在栈中,也就是start_node -> end_node是返祖边 else if( nodeIsInStack[end_node] ){ Lows[start_node] = min( Lows[start_node], Dfns[end_node] ); } } } //若是start_node的时间戳与Lows相等在构成SCC if( Dfns[start_node] == Lows[start_node] ){ scc_num++; cout << "scc_num: " << scc_num << endl; int pop_node_index = Stack[stack_pointer]; stack_pointer--; nodeIsInStack[pop_node_index] = false; cout << pop_node_index << " "; while( start_node != pop_node_index ){ pop_node_index = Stack[stack_pointer]; nodeIsInStack[pop_node_index] = false; stack_pointer--; cout << pop_node_index << " "; } cout << endl; } } void init_values(){ memset( Graph, false, sizeof( Graph ) ); memset( Stack, 0, sizeof( Stack ) ); memset( nodeIsInStack, false, sizeof( nodeIsInStack ) ); memset( Lows, 0, sizeof( Lows ) ); memset( Dfns, 0, sizeof( Dfns ) ); } int main(){ init_values(); // 初始化图 //这里用数字代替节点的名字 int start_node, end_node; cin >> node_num; while( true ){ cin >> start_node >> end_node; //起始点终止点都为 0 的时候结束 if( start_node == 0 && end_node == 0 ) break; Graph[start_node][end_node] = true; } for( int start_node = 1; start_node <= node_num; ++start_node ){ //该节点尚未被访问到 if( Dfns[start_node] == 0 ){ find_scc( start_node ); } } }
有向图的强连通算法 -- tarjan算法,布布扣,bubuko.com
标签:algorithm
原文地址:http://blog.csdn.net/pandora_madara/article/details/28653533