标签:
题目:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
思路:
1.交易两次与交易一次的做法类似,只需将数组拆分成两个数组,然后分别求两个数组交易一次的最大值,再相加;
2.假设数组在索引i处拆分,将0-i之间的数组元素的最大值放入list1中,将i-n之间的数组元素的最大值放入list2中
3.遍历i,判断取i何值时,获得最大收益
v1版本
public class Solution { public int maxProfit(int[] prices) { if(prices==null||prices.length<=0) return 0; int len=prices.length; //数组长度 List<Integer> dp_pre=new ArrayList<Integer>(); //0-i的子数组 List<Integer> dp_post=new ArrayList<Integer>(); //i-n的字数组 int min_pre=Integer.MAX_VALUE; int max_pre=0; for(int i=0;i<len;i++) { if(prices[i]<min_pre) min_pre=prices[i]; if(prices[i]-min_pre>max_pre) max_pre=prices[i]-min_pre; dp_pre.add(max_pre); } //填充dp_pre int max_post=prices[len-1]; int max_pro=0; for(int i=len-1;i>=0;i--) { if(prices[i]>max_post) max_post=prices[i]; if(max_post-prices[i]>max_pro) max_pro=max_post-prices[i]; dp2.add(max_pro); } //填充dp_post int max=0; for(int i=1;i<len;i++) { if(dp1.get(i)+dp2.get(len-1-i)>max) max=dp1.get(i)+dp2.get(len-1-i); } return max; } }
v2版本---思路相同,相对简洁
public class Solution { public int maxProfit(int[] prices) { if(len<=0) return 0; int maxPro1=0; int min1=prices[0]; List<Integer> mp=new ArrayList<Integer>(); mp.add(maxPro1); for(int i=1;i<len;i++) { if(prices[i]-min1>maxPro1) maxPro1=prices[i]-min1; if(prices[i]<min1) min1=prices[i]; mp.add(maxPro1); } int maxPro2=0; int max2=prices[len-1]; for(int i=len-2;i>=0;i--) { if(max2-prices[i]+mp.get(i)>maxPro2) { maxPro2=max2-prices[i]+mp.get(i); } if(prices[i]>max2) max2=prices[i]; } return maxPro2; } }
123-Best Time to Buy and Sell Stock III
标签:
原文地址:http://www.cnblogs.com/hwu2014/p/4422132.html