标签:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / gr eat / \ / g r e at / a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces
a scrambled string "rgeat"
.
rgeat / rg eat / \ / r g e at / a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
,
it produces a scrambled string "rgtae"
.
rgtae / rg tae / \ / r g ta e / t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
题意:求s2是否是s1的拆分串。思路:一种是递归搜索,每次都是把一个串分成长度为i和len-i的两个穿,再交叉比较;第二种是DP,设dp[len][i][j]表示的是s1第i个位置开始的长度为len的s2第j个位置开始的长度为len的是否满足条件。
public class Solution { public boolean isScramble(String s1, String s2) { int len1 = s1.length(); int len2 = s2.length(); if (len1 != len2) return false; if (len1 == 1) return s1.equals(s2); char str1[] = s1.toCharArray(); char str2[] = s2.toCharArray(); Arrays.sort(str1); Arrays.sort(str2); if (Arrays.equals(str1, str2) == false) return false; for (int i = 1; i < len1; i++) { String s11 = s1.substring(0, i); String s12 = s1.substring(i, len1); String s21 = s2.substring(0, i); String s22 = s2.substring(i, len1); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; s21 = s2.substring(0, len1-i); s22 = s2.substring(len1-i, len1); if (isScramble(s11, s22) && isScramble(s12, s21)) return true; } return false; } }
public class Solution { public boolean isScramble(String s1, String s2) { int len = s1.length(); if (len != s2.length()) return false; if (len == 0) return false; char c1[] = s1.toCharArray(); char c2[] = s2.toCharArray(); boolean dp[][][] = new boolean[len+1][len+1][len+1]; for (int i = 0; i < len; i++) for (int j = 0; j < len; j++) dp[1][i][j] = c1[i] == c2[j]; for (int k = 2; k <= len; k++) for (int i = len-k; i >= 0; i--) for (int j = len-k; j >= 0; j--) { boolean flag = false; for (int m = 1; m <= k && !flag; m++) { flag = (dp[m][i][j] && dp[k-m][i+m][j+m]) || (dp[m][i][j+k-m] && dp[k-m][i+m][j]); } dp[k][i][j] = flag; } return dp[len][0][0]; } }
标签:
原文地址:http://blog.csdn.net/u011345136/article/details/45028881