码迷,mamicode.com
首页 > 其他好文 > 详细

ConcurrentSkipListMap原码解析

时间:2015-04-13 19:01:10      阅读:350      评论:0      收藏:0      [点我收藏+]

标签:java   源码   多线程   juc   无锁   

SkipList介绍


1. SkipList(跳表),在理论上能够在O(log(n))时间内完成查找、插入、删除操作。SkipList是一种红黑树的替代方案,由于SkipList与红黑树相比无论从理论和实现都简单许多,所以得到了很好的推广。SkipList是基于一种统计学原理实现的,有可能出现最坏情况,即查找和更新操作都是O(n)时间复杂度,但从统计学角度分析这种概率极小。使用SkipList类型的数据结构更容易控制多线程对集合访问的处理,因为链表的局部处理性比较好,当多个线程对SkipList进行更新操作(指插入和删除)时,SkipList具有较好的局部性,每个单独的操作,对整体数据结构影响较小。而如果使用红黑树,很可能一个更新操作,将会波及整个树的结构,其局部性较差。因此使用SkipList更适合实现多个线程的并发处理。


2. ConcurrentSkipListMap采用Lock-Free Skip List实现。非并发版TreeMap是红黑树实现的,而为什么并发版本不采用树形结构呢,作者Doug Lea也说了,暂时没有很好的无锁操作树形结构的算法:The reason is that there are no known efficient lock-free insertion and deletion algorithms for search trees. 据说已经有lock-free trees的论文了: Lock-Free Red-Black Trees Using CAS,相关问题可以参见Skip List vs. Binary Tree的讨论。

3. 调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。

源码解析(基于jdk1.8.0_40)


无锁链表

ConcurrentSkipListMap能够采用无锁实现,是因为采用了无锁操作(增加/删除)链表的算法--在删除链表结点时,使用标记删除的思想,先将结点value设置为null(步骤1),然后插入一个后继marker结点(步骤2,如果失败则说明有并发的insert,重试append marker就好了)。以后在查找发现marker结点时才进行真正的删除(步骤3)。这样设计让insert/delete操作需要竞争修改同一个结点的next指针,避免了并发操作出现insert被吃掉的情况(例如并发insert/delete操作单链表时,线程A insert了一个结点x到n结点后面,而此时线程B立即delete掉了n结点,如果不加锁或者append marker标记的话,新结点x就被一起误删了)。下面的算法描述来源于该类的doc注释:

     * Here's the sequence of events for a deletion of node n with
     * predecessor b and successor f, initially:
     *
     *        +------+       +------+      +------+
     *   ...  |   b  |------>|   n  |----->|   f  | ...
     *        +------+       +------+      +------+
     *
     * 1. CAS n's value field from non-null to null.
     *    From this point on, no public operations encountering
     *    the node consider this mapping to exist. However, other
     *    ongoing insertions and deletions might still modify
     *    n's next pointer.
     *
     * 2. CAS n's next pointer to point to a new marker node.
     *    From this point on, no other nodes can be appended to n.
     *    which avoids deletion errors in CAS-based linked lists.
     *
     *        +------+       +------+      +------+       +------+
     *   ...  |   b  |------>|   n  |----->|marker|------>|   f  | ...
     *        +------+       +------+      +------+       +------+
     *
     * 3. CAS b's next pointer over both n and its marker.
     *    From this point on, no new traversals will encounter n,
     *    and it can eventually be GCed.
     *        +------+                                    +------+
     *   ...  |   b  |----------------------------------->|   f  | ...
     *        +------+                                    +------+
     *


数据结构


 /*
     * This class implements a tree-like two-dimensionally linked skip
     * list in which the index levels are represented in separate
     * nodes from the base nodes holding data.  There are two reasons
     * for taking this approach instead of the usual array-based
     * structure: 1) Array based implementations seem to encounter
     * more complexity and overhead 2) We can use cheaper algorithms
     * for the heavily-traversed index lists than can be used for the
     * base lists.  Here's a picture of some of the basics for a
     * possible list with 2 levels of index:
     *
     * Head nodes          Index nodes
     * +-+    right        +-+                      +-+
     * |2|---------------->| |--------------------->| |->null
     * +-+                 +-+                      +-+
     *  | down              |                        |
     *  v                   v                        v
     * +-+            +-+  +-+       +-+            +-+       +-+
     * |1|----------->| |->| |------>| |----------->| |------>| |->null
     * +-+            +-+  +-+       +-+            +-+       +-+
     *  v              |    |         |              |         |
     * Nodes  next     v    v         v              v         v
     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
     * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
     *

这是一个level等于2的skip list,注意初始化时level为1。Level大于等于1的结点均为Index结点,特别的,最左边的Index结点又是HeadIndex结点。而Level 0 也叫base-level,是Nodes单链表,是通过Level 1 的Index.node访问到的。


Node:

/**
     * Nodes hold keys and values, and are singly linked in sorted
     * order, possibly with some intervening marker nodes. The list is
     * headed by a dummy node accessible as head.node. The value field
     * is declared only as Object because it takes special non-V
     * values for marker and header nodes.
     */
    static final class Node<K,V> {
        final K key;
        volatile Object value;
        volatile Node<K,V> next;

        /**
         * Creates a new regular node.
         */
        Node(K key, Object value, Node<K,V> next) {
            this.key = key;
            this.value = value;
            this.next = next;
        }

        /**
         * Creates a new marker node. A marker is distinguished by
         * having its value field point to itself.  Marker nodes also
         * have null keys, a fact that is exploited in a few places,
         * but this doesn't distinguish markers from the base-level
         * header node (head.node), which also has a null key.
         */
        Node(Node<K,V> next) {
            this.key = null;
            this.value = this;
            this.next = next;
        }

        /**
         * compareAndSet value field
         */
        boolean casValue(Object cmp, Object val) {
            return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
        }

        /**
         * compareAndSet next field
         */
        boolean casNext(Node<K,V> cmp, Node<K,V> val) {
            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
        }

        /**
         * Returns true if this node is a marker. This method isn't
         * actually called in any current code checking for markers
         * because callers will have already read value field and need
         * to use that read (not another done here) and so directly
         * test if value points to node.
         *
         * @return true if this node is a marker node
         */
        boolean isMarker() {
            return value == this;
        }

        /**
         * Returns true if this node is the header of base-level list.
         * @return true if this node is header node
         */
        boolean isBaseHeader() {
            return value == BASE_HEADER;
        }

        /**
         * Tries to append a deletion marker to this node.
         * @param f the assumed current successor of this node
         * @return true if successful
         */
        boolean appendMarker(Node<K,V> f) {
            return casNext(f, new Node<K,V>(f));
        }

        /**
         * Helps out a deletion by appending marker or unlinking from
         * predecessor. This is called during traversals when value
         * field seen to be null.
         * @param b predecessor
         * @param f successor
         */
        void helpDelete(Node<K,V> b, Node<K,V> f) {
            /*
             * Rechecking links and then doing only one of the
             * help-out stages per call tends to minimize CAS
             * interference among helping threads.
             */
            if (f == next && this == b.next) {
                if (f == null || f.value != f) // not already marked
                    casNext(f, new Node<K,V>(f));
                else
                    b.casNext(this, f.next);
            }
        }
		
		......
    }

Index:

    /**
     * Index nodes represent the levels of the skip list.  Note that
     * even though both Nodes and Indexes have forward-pointing
     * fields, they have different types and are handled in different
     * ways, that can't nicely be captured by placing field in a
     * shared abstract class.
     */
    static class Index<K,V> {
        final Node<K,V> node;
        final Index<K,V> down;
        volatile Index<K,V> right;

        /**
         * Creates index node with given values.
         */
        Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
            this.node = node;
            this.down = down;
            this.right = right;
        }

        /**
         * compareAndSet right field
         */
        final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
            return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
        }

        /**
         * Returns true if the node this indexes has been deleted.
         * @return true if indexed node is known to be deleted
         */
        final boolean indexesDeletedNode() {
            return node.value == null;
        }

        /**
         * Tries to CAS newSucc as successor.  To minimize races with
         * unlink that may lose this index node, if the node being
         * indexed is known to be deleted, it doesn't try to link in.
         * @param succ the expected current successor
         * @param newSucc the new successor
         * @return true if successful
         */
        final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
            Node<K,V> n = node;
            newSucc.right = succ;
            return n.value != null && casRight(succ, newSucc);
        }

        /**
         * Tries to CAS right field to skip over apparent successor
         * succ.  Fails (forcing a retraversal by caller) if this node
         * is known to be deleted.
         * @param succ the expected current successor
         * @return true if successful
         */
        final boolean unlink(Index<K,V> succ) {
            return node.value != null && casRight(succ, succ.right);
        }

		......
    }

HeadIndex:

    /**
     * Nodes heading each level keep track of their level.
     */
    static final class HeadIndex<K,V> extends Index<K,V> {
        final int level;
        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
            super(node, down, right);
            this.level = level;
        }
    }

构造函数和初始化方法:

    public ConcurrentSkipListMap() {
        this.comparator = null;
        initialize();
    }

    /**
     * Constructs a new, empty map, sorted according to the specified
     * comparator.
     *
     * @param comparator the comparator that will be used to order this map.
     *        If {@code null}, the {@linkplain Comparable natural
     *        ordering} of the keys will be used.
     */
    public ConcurrentSkipListMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
        initialize();
    }

    public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
        this.comparator = null;
        initialize();
        putAll(m);
    }

    public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
        this.comparator = m.comparator();
        initialize();
        buildFromSorted(m);
    }

initialize方法,注意初始的HeadIndex level为1:

    /**
     * Initializes or resets state. Needed by constructors, clone,
     * clear, readObject. and ConcurrentSkipListSet.clone.
     * (Note that comparator must be separately initialized.)
     */
    private void initialize() {
        keySet = null;
        entrySet = null;
        values = null;
        descendingMap = null;
        head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
                                  null, null, 1);
    }


doGet方法:

代码中的Node b, n, f 分别对应文章开头图示的单链表。过程比较清晰,先通过findPredecessor方法搜索到base level层的Node结点,然后再继续顺序向后搜索单链表,如果发现数据不一致的时候则回到outer循环重新查找。

    /**
     * Gets value for key. Almost the same as findNode, but returns
     * the found value (to avoid retries during re-reads)
     *
     * @param key the key
     * @return the value, or null if absent
     */
    private V doGet(Object key) {
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                Object v; int c;
                if (n == null)
                    break outer;
                Node<K,V> f = n.next;
                if (n != b.next)                // inconsistent read
                    break;
                if ((v = n.value) == null) {    // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (b.value == null || v == n)  // b is deleted
                    break;
                if ((c = cpr(cmp, key, n.key)) == 0) {
                    @SuppressWarnings("unchecked") V vv = (V)v;
                    return vv;
                }
                if (c < 0)
                    break outer;
                b = n;
                n = f;
            }
        }
        return null;
    }


findPredecessor方法

通过索引查找到Level 1层的Index结点q,然后返回q.node(即base level层的Node)。另外该方法还提供一个额外功能:发现Node结点被删除后,删除其Index索引结点。

    /**
     * Returns a base-level node with key strictly less than given key,
     * or the base-level header if there is no such node.  Also
     * unlinks indexes to deleted nodes found along the way.  Callers
     * rely on this side-effect of clearing indices to deleted nodes.
     * @param key the key
     * @return a predecessor of key
     */
    private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
        if (key == null)
            throw new NullPointerException(); // don't postpone errors
        for (;;) {
            for (Index<K,V> q = head, r = q.right, d;;) {
                if (r != null) {
                    Node<K,V> n = r.node;
                    K k = n.key;
                    if (n.value == null) {//发现结点已被标记删除,则调用前继结点q.unlink()方法删除Index索引结点
                        if (!q.unlink(r))
                            break;           // restart
                        r = q.right;         // reread r
                        continue;
                    }
                    if (cpr(cmp, key, k) > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }
                if ((d = q.down) == null)
                    return q.node;
                q = d;
                r = d.right;
            }
        }
    }


doPut方法:

第一步,outer循环,搜索Skip List,找到key相等的结点则做更新操作,否则创建新结点并插入到base level层。

第二步,判断是否要帮助新增结点创建索引,如果要,使用随机数计算得到level值,作为要创建索引的层数。如果level>当前head.level,则要提升总Level层数(每次Level层数只增加1),并cas更新head属性。然后构建Level 1 到level层的Index结点链(通过链接Index.down指针,后续再补建Index.right指针)。 

第三步,splice循环,从level层开始逐层补建Index.right指针。

    /**
     * Main insertion method.  Adds element if not present, or
     * replaces value if present and onlyIfAbsent is false.
     * @param key the key
     * @param value the value that must be associated with key
     * @param onlyIfAbsent if should not insert if already present
     * @return the old value, or null if newly inserted
     */
    private V doPut(K key, V value, boolean onlyIfAbsent) {
        Node<K,V> z;             // added node
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                if (n != null) {
                    Object v; int c;
                    Node<K,V> f = n.next;
                    if (n != b.next)               // inconsistent read
                        break;
                    if ((v = n.value) == null) {   // n is deleted
                        n.helpDelete(b, f);
                        break;
                    }
                    if (b.value == null || v == n) // b is deleted
                        break;
                    if ((c = cpr(cmp, key, n.key)) > 0) {
                        b = n;
                        n = f;
                        continue;
                    }
                    if (c == 0) {
                        if (onlyIfAbsent || n.casValue(v, value)) {
                            @SuppressWarnings("unchecked") V vv = (V)v;
                            return vv;
                        }
                        break; // restart if lost race to replace value
                    }
                    // else c < 0; fall through
                }

                z = new Node<K,V>(key, value, n);
                if (!b.casNext(n, z))
                    break;         // restart if lost race to append to b
                break outer;
            }
        }

        int rnd = ThreadLocalRandom.nextSecondarySeed();
        if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
            int level = 1, max;
            while (((rnd >>>= 1) & 1) != 0)
                ++level;
            Index<K,V> idx = null;
            HeadIndex<K,V> h = head;
            if (level <= (max = h.level)) {
                for (int i = 1; i <= level; ++i)
                    idx = new Index<K,V>(z, idx, null);
            }
            else { // try to grow by one level
                level = max + 1; // hold in array and later pick the one to use
                @SuppressWarnings("unchecked")Index<K,V>[] idxs =
                    (Index<K,V>[])new Index<?,?>[level+1];
                for (int i = 1; i <= level; ++i)
                    idxs[i] = idx = new Index<K,V>(z, idx, null);
                for (;;) {
                    h = head;
                    int oldLevel = h.level;
                    if (level <= oldLevel) // lost race to add level
                        break;
                    HeadIndex<K,V> newh = h;
                    Node<K,V> oldbase = h.node;
                    for (int j = oldLevel+1; j <= level; ++j)
                        newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
                    if (casHead(h, newh)) {
                        h = newh;
                        idx = idxs[level = oldLevel];
                        break;
                    }
                }
            }
            // find insertion points and splice in
            splice: for (int insertionLevel = level;;) {
                int j = h.level;
                for (Index<K,V> q = h, r = q.right, t = idx;;) {
                    if (q == null || t == null)
                        break splice;
                    if (r != null) {
                        Node<K,V> n = r.node;
                        // compare before deletion check avoids needing recheck
                        int c = cpr(cmp, key, n.key);
                        if (n.value == null) {
                            if (!q.unlink(r))
                                break;
                            r = q.right;
                            continue;
                        }
                        if (c > 0) {
                            q = r;
                            r = r.right;
                            continue;
                        }
                    }

                    if (j == insertionLevel) {
                        if (!q.link(r, t))
                            break; // restart
                        if (t.node.value == null) {
                            findNode(key);
                            break splice;
                        }
                        if (--insertionLevel == 0)
                            break splice;
                    }

                    if (--j >= insertionLevel && j < level)
                        t = t.down;
                    q = q.down;
                    r = q.right;
                }
            }
        }
        return null;
    }


doRemove方法:

该方法流程类似doGet(),查找到base level层的Node结点后,做标记删除n.casValue(v, null),并append Marker结点。后续利用findPredecessor方法清除无效的Index索引结点。

    /**
     * Main deletion method. Locates node, nulls value, appends a
     * deletion marker, unlinks predecessor, removes associated index
     * nodes, and possibly reduces head index level.
     *
     * Index nodes are cleared out simply by calling findPredecessor.
     * which unlinks indexes to deleted nodes found along path to key,
     * which will include the indexes to this node.  This is done
     * unconditionally. We can't check beforehand whether there are
     * index nodes because it might be the case that some or all
     * indexes hadn't been inserted yet for this node during initial
     * search for it, and we'd like to ensure lack of garbage
     * retention, so must call to be sure.
     *
     * @param key the key
     * @param value if non-null, the value that must be
     * associated with key
     * @return the node, or null if not found
     */
    final V doRemove(Object key, Object value) {
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                Object v; int c;
                if (n == null)
                    break outer;
                Node<K,V> f = n.next;
                if (n != b.next)                    // inconsistent read
                    break;
                if ((v = n.value) == null) {        // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (b.value == null || v == n)      // b is deleted
                    break;
                if ((c = cpr(cmp, key, n.key)) < 0)
                    break outer;
                if (c > 0) {
                    b = n;
                    n = f;
                    continue;
                }
                if (value != null && !value.equals(v))
                    break outer;
                if (!n.casValue(v, null))//标记删除
                    break;
                if (!n.appendMarker(f) || !b.casNext(n, f))//插入marker结点
                    findNode(key);                  // retry via findNode
                else {
                    findPredecessor(key, cmp);      // clean index
                    if (head.right == null)
                        tryReduceLevel();
                }
                @SuppressWarnings("unchecked") V vv = (V)v;
                return vv;
            }
        }
        return null;
    }


相关内容链接


SkipList 跳表 (skip list原理)

集合框架 Map篇(5)----ConcurrentSkipListMap (原理介绍,以及基于jdk1.6源码解析,不建议看,因为到jdk8很多实现已经不同了)


ConcurrentSkipListMap原码解析

标签:java   源码   多线程   juc   无锁   

原文地址:http://blog.csdn.net/patrickyoung6625/article/details/45011411

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!