Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace
(spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output the sum of the maximal sub-rectangle.
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Greater New York 2001
最大连续子串和:
有串s,用一个临时变量t维护一个ans,若t>=0则加上s[i]可能会更好,于是有t+=s[i],
若t<0,则变成s[i]可能会更好,于是有t=s[i]
每次若大于ans,更新即可
最大子矩阵和:
有矩阵s,用一个临时数组a维护一个ans,每次a都记录s连续i行矩阵的和,
这样就可以当作最大连续子串处理,每次算出最大值更新ans,即可
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
using namespace std;
int a[110],pic[110][110];
int n;
int sub()
{
int ans=INT_MIN,t=0;
for(int i=0;i<n;i++)
{
if(t>=0)
t+=a[i];
else
t=a[i];
ans=max(ans,t);
}
return ans;
}
int matrix()
{
int ans=INT_MIN;
for(int i=0;i<n;i++)
{
memset(a,0,sizeof(a));
for(int j=i;j<n;j++)
{
for(int k=0;k<n;k++)
a[k]+=pic[j][k];
ans=max(ans,sub());
}
}
return ans;
}
int main()
{
while(cin>>n)
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>pic[i][j];
cout<<matrix()<<endl;
}
}