标签:leetcode
题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
思路分析:
我们只要保证当前的第k歩是最小的,然后第k+1歩同样选择最小的,这样走下去就OK了。
递推公式:path[i][j] = min(path[i-1][j], path[j][i-1]) + path[i][j]
先看一个4*4的方格,0表示初始位置,i表示第i歩可以走的位置。大概了解下该怎么走。
0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 |
C++参考代码:
先对首行和首列进行初始化,然后利用递推公式进行计算。
class Solution
{
public:
int minPathSum(vector<vector<int> > &grid)
{
if (grid.empty() || grid[0].empty()) return 0;
int rows = int(grid.size());
int columns = int(grid[0].size());
//二维数组的动态申请
int **result = new int*[rows];
for (int i = 0; i < rows; ++i)
{
result[i] = new int[columns];
}
result[0][0] = grid[0][0];
//第一列进行初始化
for (int i = 1; i < rows; ++i)
{
result[i][0] = result[i - 1][0] + grid[i][0];
}
//第一行进行初始化
for (int i = 1; i < columns; ++i)
{
result[0][i] = result[0][i - 1] + grid[0][i];
}
//利用递推公式进行计算
for (int i = 1; i < rows; ++i)
{
for (int j = 1; j < columns; ++j)
{
result[i][j] = min(result[i - 1][j], result[i][j - 1]) + grid[i][j];
}
}
int sum = result[rows - 1][columns - 1];
//申请空间的释放
for (int i = 0; i < rows; ++i)
{
delete[] result[i];
}
delete[] result;
return sum;
}
};
C#参考代码:
虽然没有C++的高效,但是C#代码书写有时候感觉很优雅,简洁明了!
public class Solution
{
public int MinPathSum(int[,] grid)
{
if (grid.Length == 0) return 0;
//获得二维数组的行数
int rows = grid.GetLength(0);
//获得二维数组的列数
int columns = grid.GetLength(1);
int[,] result = new int[rows, columns];
result[0, 0] = grid[0, 0];
for (int i = 1; i < rows; ++i)
{
result[i, 0] = result[i - 1, 0] + grid[i, 0];
}
for (int i = 1; i < columns; ++i)
{
result[0, i] = result[0, i - 1] + grid[0, i];
}
for (int i = 1; i < rows; i++)
{
for (int j = 1; j < columns; j++)
{
result[i, j] = Math.Min(result[i - 1, j], result[i, j - 1]) + grid[i, j];
}
}
return result[rows - 1, columns - 1];
}
}
标签:leetcode
原文地址:http://blog.csdn.net/theonegis/article/details/45047489