标签:
Description
Input
Output
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
题意:求序列的逆序数,每求完一次将该序列的第一个数放在最后一个,然后再求逆序数,一直重复,然后求最小的逆序数。
思路:用线段树记录下各个数,区间的值[a,b]表示数字a~b的已经出现了多少次,所以对于ai,只需要查询[ai, n]有多少个(ai之后的比ai小的有多少个),就是代表ai有多少个逆序数了。然后通过推理我们可以发现:假如目前的第一个数是a[i],那当把他放到最后面的时候,少的逆序数是本来后面比他小的数的个数。多的逆序数就是放到后面后前面比他大的数的个数。因为所有数都是从0到n-1.所以比他小的数就是a[i],比他大的数就是n-1-a[i]。所以算出初始序列的逆序数,然后用出事序列的逆序数+n-2*a[i]-1就是改变后的序列的逆序数。
#include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <sstream> #include <algorithm> #include <set> #include <queue> #include <stack> #include <map> using namespace std; typedef long long LL; const int inf=0x3f3f3f3f; const double pi= acos(-1.0); #define lson l,mid,rt<<1 #define rson mid+1,r,rt<<1|1 const int MAXN=5010; int sum[MAXN<<2]; void PushUp(int rt) { sum[rt]=sum[rt<<1]+sum[rt<<1|1]; } void Build(int l,int r,int rt) { sum[rt]=0; if(l==r) { return ; } int mid=(l+r)>>1; Build(lson); Build(rson); PushUp(rt); } void Update(int p,int l,int r,int rt) { if(l==r) { sum[rt]++; return ; } int mid=(l+r)>>1; if(p<=mid) Update(p,lson); else Update(p,rson); PushUp(rt); } int Query(int ll,int rr,int l,int r,int rt) { if(ll<=l&&rr>=r) { return sum[rt]; } int mid=(l+r)/2; int ans=0; if(ll<=mid) ans+=Query(ll,rr,lson); if(rr>mid) ans+=Query(ll,rr,rson); return ans; } int main() { int n,i; int a[MAXN]; int ans; int x; while(~scanf("%d",&n)) { ans=0; Build(0,n-1,1); for(i=0; i<n; i++) { scanf("%d",&a[i]); ans+=Query(a[i],n-1,0,n-1,1); Update(a[i],0,n-1,1); } x=ans; for(i=0; i<n; i++) { x+=n-2*a[i]-1; ans=min(ans,x); } printf("%d\n",ans); } return 0; }
HDU 1394- Minimum Inversion Number(线段树求逆序数)
标签:
原文地址:http://blog.csdn.net/u013486414/article/details/45047291