标签:
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines represents an operation. "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000. "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
#include <iostream> #include <cstdio> #define LL long long using namespace std; int n, q; //线段树 const int maxn = 100000; struct node { int lt, rt; LL val, add; }tree[4*maxn]; //建立线段树 void Build(int lt, int rt, int id) { tree[id].lt = lt; tree[id].rt = rt; tree[id].val = 0;//每段的初值,根据题目要求 tree[id].add = 0; if (lt == rt) { scanf("%I64d", &tree[id].val); //tree[id].add = ??; return; } int mid = (lt + rt) >> 1; Build(lt, mid, id << 1); Build(mid + 1, rt, id << 1 | 1); tree[id].val = tree[id<<1].val + tree[id<<1|1].val; } void PushDown(int id, int pls) { tree[id<<1].add += tree[id].add; //tree[id<<1].val += (pls-(pls>>1))*tree[id].add; tree[id<<1].val += (tree[id<<1].rt-tree[id<<1].lt+1)*tree[id].add; tree[id<<1|1].add += tree[id].add; //tree[id<<1|1].val += (pls>>1)*tree[id].add; tree[id<<1|1].val += (tree[id<<1|1].rt-tree[id<<1|1].lt+1)*tree[id].add; tree[id].add = 0; } //增加区间内每个点固定的值 void Add(int lt, int rt, int id, int pls) { if (lt <= tree[id].lt && rt >= tree[id].rt) { tree[id].add += pls; tree[id].val += pls * (tree[id].rt-tree[id].lt+1); return; } if (tree[id].add != 0) { PushDown(id, tree[id].rt-tree[id].lt+1); } int mid = (tree[id].lt + tree[id].rt) >> 1; if (lt <= mid) Add(lt, rt, id<<1, pls); if (rt > mid) Add(lt, rt, id<<1|1, pls); tree[id].val = tree[id<<1].val + tree[id<<1|1].val; } LL Query(int lt, int rt, int id) { if (lt <= tree[id].lt && rt >= tree[id].rt) return tree[id].val; if (tree[id].add != 0) { PushDown(id, tree[id].rt-tree[id].lt+1); } int mid = (tree[id].lt + tree[id].rt) >> 1; LL ans = 0; if (lt <= mid) ans += Query(lt, rt, id<<1); if (rt > mid) ans += Query(lt, rt, id<<1|1); return ans; } int main() { //freopen("in.txt", "r", stdin); char op; int a, b, k; while (scanf("%d%d", &n, &q) != EOF) { Build(1, n, 1); for (int i = 0; i < q; ++i) { getchar(); op = getchar(); getchar(); scanf("%d%d", &a, &b); if (op == ‘Q‘) printf("%I64d\n", Query(a, b, 1)); else { scanf("%d", &k); Add(a, b, 1, k); } } } return 0; }
ACM学习历程——POJ3468 A Simple Problem with Integers(线段树)
标签:
原文地址:http://www.cnblogs.com/andyqsmart/p/4430335.html