标签:
题目链接:BZOJ - 1036
这道题可以用树链剖分,块状树等多种方法解决,也可以使用 LCT。
修改某个点的值时,先将它 Splay 到它所在的 Splay 的根,然后修改它的值,再将它 Update 一下。
询问 x, y 两点之间的路径时,假设 x 是深度小的那一个,先 Access(x) ,然后再 Access(y) 的返回值就是 x, y 的 LCA 。
这时从 x 到 LCA 的路径已经在 LCA 处断开了。我们将 x Splay 一下,然后就是 x 所在的 Splay, LCA, Son[LCA][1] 这 3 部分组成了 x, y 的路径。
要特判 x == LCA 的情况。
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; inline void Read(int &Num) { char c = getchar(); bool Neg = false; while (c < ‘0‘ || c > ‘9‘) { if (c == ‘-‘) Neg = true; c = getchar(); } Num = c - ‘0‘; c = getchar(); while (c >= ‘0‘ && c <= ‘9‘) { Num = Num * 10 + c - ‘0‘; c = getchar(); } if (Neg) Num = -Num; } const int MaxN = 30000 + 5, INF = 999999999; int n, q, Ans; int A[MaxN], Father[MaxN], Sum[MaxN], Max[MaxN], Son[MaxN][2], Depth[MaxN]; bool isRoot[MaxN]; struct Edge { int v; Edge *Next; } E[MaxN * 2], *P = E, *Point[MaxN]; inline void AddEdge(int x, int y) { ++P; P -> v = y; P -> Next = Point[x]; Point[x] = P; } void DFS(int x, int Fa, int Dep) { Father[x] = Fa; Depth[x] = Dep; for (Edge *j = Point[x]; j; j = j -> Next) { if (j -> v == Fa) continue; DFS(j -> v, x, Dep + 1); } } inline int gmin(int a, int b) {return a < b ? a : b;} inline int gmax(int a, int b) {return a > b ? a : b;} inline void Update(int x) { Max[x] = gmax(A[x], gmax(Max[Son[x][0]], Max[Son[x][1]])); Sum[x] = A[x] + Sum[Son[x][0]] + Sum[Son[x][1]]; } void Rotate(int x, int f) { int y = Father[x]; if (isRoot[y]) { isRoot[y] = false; isRoot[x] = true; } else { if (y == Son[Father[y]][0]) Son[Father[y]][0] = x; else Son[Father[y]][1] = x; } Father[x] = Father[y]; Son[y][f ^ 1] = Son[x][f]; if (Son[x][f]) Father[Son[x][f]] = y; Son[x][f] = y; Father[y] = x; Update(y); Update(x); } void Splay(int x) { int y; while (!isRoot[x]) { y = Father[x]; if (isRoot[y]) { if (x == Son[y][0]) Rotate(x, 1); else Rotate(x, 0); break; } if (y == Son[Father[y]][0]) { if (x == Son[y][0]) { Rotate(y, 1); Rotate(x, 1); } else { Rotate(x, 0); Rotate(x, 1); } } else { if (x == Son[y][1]) { Rotate(y, 0); Rotate(x, 0); } else { Rotate(x, 1); Rotate(x, 0); } } } } int Access(int x) { int y = 0; while (x != 0) { Splay(x); isRoot[Son[x][1]] = true; Son[x][1] = y; if (y) isRoot[y] = false; Update(x); y = x; x = Father[x]; } return y; } char Str[10]; int main() { scanf("%d", &n); int a, b, LCA; for (int i = 1; i <= n - 1; ++i) { Read(a); Read(b); AddEdge(a, b); AddEdge(b, a); } DFS(1, 0, 0); for (int i = 1; i <= n; ++i) { Read(A[i]); isRoot[i] = true; Sum[i] = Max[i]= A[i]; } Sum[0] = 0; Max[0] = -INF; scanf("%d", &q); for (int i = 1; i <= q; ++i) { scanf("%s", Str); Read(a); Read(b); if (strcmp(Str, "CHANGE") == 0) { Splay(a); A[a] = b; Update(a); } else if (strcmp(Str, "QMAX") == 0) { if (Depth[a] > Depth[b]) swap(a, b); Access(a); LCA = Access(b); Splay(a); if (a == LCA) Ans = gmax(A[LCA], Max[Son[LCA][1]]); else Ans = gmax(A[LCA], gmax(Max[a], Max[Son[LCA][1]])); printf("%d\n", Ans); } else if (strcmp(Str, "QSUM") == 0) { if (Depth[a] > Depth[b]) swap(a, b); Access(a); LCA = Access(b); Splay(a); if (a == LCA) Ans = A[LCA] + Sum[Son[LCA][1]]; else Ans = A[LCA] + Sum[a] + Sum[Son[LCA][1]]; printf("%d\n", Ans); } } return 0; }
[BZOJ 1036] [ZJOI2008] 树的统计Count 【Link Cut Tree】
标签:
原文地址:http://www.cnblogs.com/JoeFan/p/4433019.html