标签:
以下全部抄自“李二娃的博客”,地址 http://www.cnblogs.com/lichen782/p/leetcode_Largest_Rectangle_in_Histogram.html
说的超详细超有画面感,多谢作者的解释!
==========羞羞的引用转载开始==============
16行,给跪了。。。。
这个我不去debug下都特么不知道在干嘛。
那要不就debug下看看这段代码在做神马。例子就用题目中的[2,1,5,6,2,3]吧。
首先,如果栈是空的,那么索引i入栈。那么第一个i=0就进去吧。注意栈内保存的是索引,不是高度。然后i++。
然后继续,当i=1的时候,发现h[i]小于了栈内的元素,于是出栈。(由此可以想到,哦,看来stack里面只存放单调递增的索引)
这时候stack为空,所以面积的计算是h[t] * i.t是刚刚弹出的stack顶元素。也就是蓝色部分的面积。
继续。这时候stack为空了,继续入栈。注意到只要是连续递增的序列,我们都要keep pushing,直到我们遇到了i=4,h[i]=2小于了栈顶的元素。
这时候开始计算矩形面积。首先弹出栈顶元素,t=3。即下图绿色部分。
接下来注意到栈顶的(索引指向的)元素还是大于当前i指向的元素,于是出栈,并继续计算面积,桃红色部分。
最后,栈顶的(索引指向的)元素大于了当前i指向的元素,循环继续,入栈并推动i前进。直到我们再次遇到下降的元素,也就是我们最后人为添加的dummy元素0.
同理,我们计算栈内的面积。由于当前i是最小元素,所以所有的栈内元素都要被弹出并参与面积计算。
注意我们在计算面积的时候已经更新过了maxArea。
总结下,我们可以看到,stack中总是保持递增的元素的索引,然后当遇到较小的元素后,依次出栈并计算栈中bar能围成的面积,直到栈中元素小于当前元素。
可是为什么这个方法是正确的呢? 我也没搞清楚。只是觉得不明觉厉了。
-------------------------------------------------更新----------------------------------------------------------------
可以这样理解这个算法,看下图。
例如我们遇到最后遇到一个递减的bar(红色)。高度位于红线上方的(也就是算法中栈里面大于最右bar的)元素,他们是不可能和最右边的较小高度bar围成一个比大于在弹栈过程中的矩形面积了(黄色面积),因为红色的bar对他们来说是一个短板,和红色bar能围成的最大面积也就是红色的高度乘以这些“上流社会”所跨越的索引范围。但是“上流社会”的高度个个都比红色bar大,他们完全只计算彼此之间围成的面积就远远大于和红色bar围成的任意面积了。所以红色bar是不可能参与“上流社会”的bar的围城的(好悲哀)。
但是屌丝也不用泄气哦。因为虽然长度不占优势,但是团结的力量是无穷的。它还可以参与“比较远的”比它还要屌丝的bar的围城。他们的面积是有可能超过上流社会的面积的,因为距离啊!所以弹栈到比红色bar小就停止了。
另外一个细节需要注意的是,弹栈过程中面积的计算。
h[t] * (stack.isEmpty() ? i : i - stack.peek() - 1)
h[t]是刚刚弹出的栈顶端元素。此时的面积计算是h[t]和前面的“上流社会”能围成的最大面积。这时候要注意哦,栈内索引指向的元素都是比h[t]小的,如果h[t]是目前最小的,那么栈内就是空哦。而在目前栈顶元素和h[t]之间(不包括h[t]和栈顶元素),都是大于他们两者的。如下图所示:
那h[t]无疑就是Stack.Peek和t之间那些上流社会的短板啦,而它们的跨越就是i - Stack.Peek - 1。
所以说,这个弹栈的过程也是维持程序不变量的方法啊:栈内元素一定是要比当前i指向的元素小的。
=============引用结束=============
我自己的code
leetcode 改了东西,所以只能用以前的版本了,懒得跟着改了
public class Solution { public int largestRectangleArea(int[] height) { int i = 0; int res = 0; Stack<Integer> st = new Stack<Integer>(); //padding a new array int[] h = new int[height.length+1]; h = Arrays.copyOf(height, height.length+1); //copyOf(byte[] original, int newLength) Copies the specified array, truncating or padding with zeros (if necessary) so the copy has the specified length. while(i<h.length){ if(st.isEmpty() ||h[i] >= h[st.peek()] ){ // 单调递增stack,存储的是index // if(st.isEmpty() ||h[i] >= st.peek() ){ st.push(i++); }else{ int t = st.pop(); // 发现了比我高的,那就在st里往前退回一步 res = Math.max(res, h[t]*(st.isEmpty()? i: i-st.peek()-1)); // i-st.peek()这个位置是st里面比h【t】矮的那个点,这个点之后到当前i,都比h【t】高,因此面积就是h【t】*i-st.peek()-1 } } return res; } }
Largest Rectangle in Histogram
标签:
原文地址:http://www.cnblogs.com/jiajiaxingxing/p/4434405.html