标签:
谈到sql优化,大家会异口同声的说建立索引,那么为什么建立了索引可以够提高效率?体现在哪?所有的查询都可以吗?什么样的查询才会提高效率?又有哪些注意事项呢?等等这一系列问题,下面让我们来一探究竟:
一.为什么建立了索引可以够提高效率?体现在哪?
先让我们看下
(一)SQLS如何访问没有建立索引的数据表
Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”。可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找。运气好的话,在第一个书架的第一本书就 找到了,运气不好的话,要到最后一个书架的最后一本书才找到。
SQLS在接到查询请求时,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段FirstIAM值中找到该表的IAM页链,也就是所有数据页集合。
这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“全表扫描”。
可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。
(二)SQLS如何访问建立了非聚集索引的数据表
非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行,每一个RID由文件ID、页编号和在页中行的编号组成。
当INDID的值在2至250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。
例如:假定在Lastname上建立了非聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是:
①SQLS查询INDID值为2;
②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;
③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第706页的第4行,N表示文件的ID值,与数据无关;
④根据上述信息,SQLS立刻在堆的第706页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。
在谈到索引基本概念的时候,我们就提到了这种方式:图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等,但有两点不同之处:
① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;
② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。
显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。
(三)SQLS如何访问建立聚集索引的数据表
在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。
查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。
这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例:
假定在Lastname字段上建立了聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是:
①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;
②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;
③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;
④将该记录返回客户端。
这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页。
难道鱼和熊掌就不能兼顾了吗?办法是有的。
(四)SQLS如何访问既有聚集索引、又有非聚集索引的数据表
如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索。就像在图书馆中,前台卡片柜中可以有不同类
别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得
更加可行,这是最为科学的检索方法。
也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。
假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select * From Member Where Firstname=’Mike’时,查询过程是:
①SQLS查询INDID值为2;
②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;
③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;
④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;
⑤将该记录返回客户端。
这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的键值加以维护,而不必考虑非聚集
索引。只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非
聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对避免了维护索引所导致的大量的额外资源消耗。
二.所有的查询都可以吗?什么样的查询才会提高效率?
其实,建立索引后并不是所有的查询都会提高效率,当且仅当基于“被建立”索引的列时进行查询时,才有可能会提高效率(后面提为什么要加上可能二字)
三.索引的优缺点及注意事项
1.优势:基于该列的查询效率高,这个毋庸置疑
缺点:空间占用,插入时效率低,可以从如下几个方面考虑:
1.1、系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引;空间
1.2、更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性。插入效率
2.注意事项:
2.1、不应选取很少或从不引用的字段;尽量选取在经常需要根据某个列进行查询的某个列。
2.2、 选取的列不超过总数的10%,不要建在逻辑型的字段,如男或女(是或否)等上。
2.3、主键默认创建索引。
2.4、基于函数的索引,要建立函数索引,否则会导致索引失效,全表扫描,如下例:
create index i_account_real_name on account(real_name)
当我们运行select id,real_name from account where upper(real_name)=?时,便使索引失效,要想使用函数,要按如下方法建立函数索引
create index i_account_real_name on account(upper(real_name))
标签:
原文地址:http://www.cnblogs.com/iliuyuet/p/4436564.html