标签:
A:处理下日期,容斥加减一下
B:DP,dp[l][r]表示区间回文子序列个数
C:模拟退火过了,然后还有个比较科学的方法,就是枚举B点,XY轴分开考虑,三分求解
代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <map> #include <string> using namespace std; int t, year; char m1[2][15]; int m[2], d[2], y[2]; char sb[13][15] = {"", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November" , "December"}; map<string, int> to; int main() { int cas = 0; for (int i = 1; i <= 12; i++) to[sb[i]] = i; scanf("%d", &t); while (t--) { scanf("%s%d,%d", m1[0], &d[0], &y[0]); scanf("%s%d,%d", m1[1], &d[1], &y[1]); m[0] = to[m1[0]]; m[1] = to[m1[1]]; if (m[0] > 2 || (m[0] == 2 && d[0] > 29)) y[0]++; if (m[1] < 2 || (m[1] == 2 && d[1] < 29)) y[1]--; int ans = 0; ans += y[1] / 4 - (y[0] - 1) / 4; ans -= y[1] / 100 - (y[0] - 1) / 100; ans += y[1] / 400 - (y[0] - 1) / 400; printf("Case #%d: %d\n", ++cas, ans); } return 0; }
#include <cstdio> #include <cstring> const int MOD = 100007; const int N = 1005; char str[N]; int t, dp[N][N]; int dfs(int l, int r) { if (dp[l][r] != -1) return dp[l][r]; dp[l][r] = 0; if (l > r) return dp[l][r] = 0; if (l == r) return dp[l][r] = 1; if (str[l] == str[r]) dp[l][r] = (dp[l][r] + dfs(l + 1, r - 1) + 1) % MOD; dp[l][r] = ((dp[l][r] + dfs(l + 1, r) + dfs(l, r - 1) - dfs(l + 1, r - 1)) % MOD + MOD) % MOD; return dp[l][r]; } int main() { int cas = 0; scanf("%d", &t); while (t--) { int ans = 0; scanf("%s", str); int n = strlen(str); memset(dp, -1, sizeof(dp)); printf("%d\n", dfs(0, n - 1)); } return 0; }
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 105; int t, n, m; int an, bn; struct Point { int x, y; Point() {} Point(int x, int y) { this->x = x; this->y = y; } void read() { scanf("%d%d", &x, &y); } } a[N * 10], b[N]; const int INF = 0x3f3f3f3f; const int d[4][2] = {0, 1, 0, -1, 1, 0, -1, 0}; typedef long long ll; ll cal(int x, int y) { ll ans = 0; for (int i = 0; i < an; i++) { int dx = x - a[i].x; int dy = y - a[i].y; ans += (ll)dx * dx; ans += (ll)dy * dy; } int Min = INF; for (int i = 0; i < bn; i++) { int dx = b[i].x - x; if (dx < 0) dx = -dx; int dy = b[i].y - y; if (dy < 0) dy = -dy; Min = min(Min, dy + dx); } return ans + Min; } int main() { int cas = 0; scanf("%d", &t); while (t--) { scanf("%d%d%d%d", &n, &m, &an, &bn); for (int i = 0; i < an; i++) a[i].read(); for (int i = 0; i < bn; i++) b[i].read(); int sx = 0, sy = 0; ll ans = (1LL<<63) - 1; int step = min(n, m); for (int ti = 0; ti < 1000; ti++) { for (int i = 0; i < 4; i++) { int x = sx + d[i][0] * step; int y = sy + d[i][1] * step; if (x < 0 || x > n || y < 0 || y > n) continue; ll tmp = cal(x, y); if (tmp < ans) { sx = x; sy = y; ans = tmp; } } step = (step * 0.83); if (step == 0) step = 1; } printf("Case #%d: %lld\n", ++cas, ans); } return 0; }
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int N = 105; int ax[N * 10], ay[N * 10]; int t, n, m, an, bn; int abss(int x) { if (x < 0) return -x; return x; } ll cal2(int u, int v, int *x) { ll ans = 0; ans += abss(u - v); for (int i = 0; i < an; i++) { int dx = u - x[i]; ans += (ll)dx * dx; } return ans; } ll cal(int l, int r, int v, int *x) { while (r - l > 2) { int midl = (l * 2 + r) / 3; int midr = (l + 2 * r) / 3; if (cal2(midl, v, x) < cal2(midr, v, x)) r = midr; else l = midl; } ll ans = (1LL<<63) - 1; for (int i = l; i <= r; i++) ans = min(ans, cal2(i, v, x)); return ans; } ll gao(int x, int y) { ll ans = 0; ans += min(cal(1, x, x, ax), cal(x, n, x, ax)); ans += min(cal(1, y, y, ay), cal(y, m, y, ay)); return ans; } int main() { int cas = 0; scanf("%d", &t); while (t--) { scanf("%d%d%d%d", &n, &m, &an, &bn); for (int i = 0; i < an; i++) scanf("%d%d", &ax[i], &ay[i]); ll ans = (1LL<<63) - 1; int x, y; for (int i = 0; i < bn; i++) { scanf("%d%d", &x, &y); ans = min(ans, gao(x, y)); } printf("Case #%d: %lld\n", ++cas, ans); } return 0; }
标签:
原文地址:http://blog.csdn.net/accelerator_/article/details/45145735