Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 486 Solved: 198
[Submit][Status][Discuss]
Description
小蛇是金融部部长。最近她决定制造一系列新的货币。假设她要制造的货币的面值为x1,x2,x3… 那么x1必须为1,xb必须为xa的正整数倍(b>a)。例如 1,5,125,250就是一组合法的硬币序列,而1,5,100,125就不是。不知从哪一天开始,可爱的蛇爱上了一种萌物——兔纸!从此,小蛇便走上了遇上兔纸娃娃就买的不归路。某天,小蛇看到了N只可爱的兔纸,假设这N 只兔纸的价钱分别是a1,a2…aN。现在小蛇想知道,在哪一组合法的硬币序列下,买这N只兔纸所需要的硬币数最少。买兔纸时不能找零。
Input
第一行,一个整数N,表示兔纸的个数
第二行,N个用空格隔开的整数,分别为N只兔纸的价钱
Output
一行,一个整数,表示最少付的钱币数。
Sample Input
2
25 102
Sample Output
4
样例解释:共有两只兔纸,价钱分别为25和102。现在小蛇构造1,25,100这样一组硬币序列,那么付第一只兔纸只需要一个面值为25的硬币,第二只兔纸需要一个面值为100的硬币和两个面值为1的硬币,总共两只兔纸需要付4个硬币。这也是所有方案中最少所需要付的硬币数。
1<=N<=50, 1<=ai<=100,000
dp好题。
意思是原来价值为
直接这样做是
其实我们可以发现
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
int cnt=0,v[100005],n,a[55],f[100005],p[100005];
void Prepare()
{
for (int i=2;i<=100000;i++)
if (!v[i])
{
p[++cnt]=i;
for (int j=i*2;j<=100000;j+=i)
v[j]=1;
}
}
int main()
{
Prepare();
scanf("%d",&n);
int m=0,tot=0;
for (int i=1;i<=n;i++)
scanf("%d",&a[i]),tot+=a[i],m=max(a[i],m);
f[1]=tot;
int ans=tot;
for (int i=2;i<=m;i++)
{
int x=i;
f[i]=tot+10;
for (int j=1;j<=cnt;j++)
if (x%p[j]==0)
{
int s=i/p[j];
int now=f[s];
for (int k=1;k<=n;k++)
now-=(a[k]/i)*(i/s-1);
f[i]=min(f[i],now);
while (x%p[j]==0)
x/=p[j];
if (x==1) break;
}
ans=min(ans,f[i]);
}
cout<<ans<<endl;
return 0;
}
原文地址:http://blog.csdn.net/regina8023/article/details/45145875