标签:
题目:给你平面上的两条直线,判断两直线关系,如果相交求交点。
分析:计算几何。利用斜率判断平行,然后利用叉乘判断共线,最后求交点。
说明:注意精度,又是好久没刷题╮(╯▽╰)╭。
#include <algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> using namespace std; //定义点结构 typedef struct pnode { double x,y,d; pnode( double a, double b ) {x = a;y = b;} pnode(){}; }point; //定义线结构 typedef struct lnode { double x,y,dx,dy; lnode(){} lnode(double X, double Y, double DX, double DY) { x = X;y = Y;dx = DX;dy = DY; } }line; //叉乘 double crossproduct(point a, point b, point c) { return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); } //不平行线段交点 point cross(line l1, line l2) { double A1 = l1.dy,B1 = l1.dx,C1 = l1.dy*l1.x-l1.dx*l1.y; double A2 = l2.dy,B2 = l2.dx,C2 = l2.dy*l2.x-l2.dx*l2.y; double x = (C1*B2-C2*B1)/(A1*B2-A2*B1); double y = (C1*A2-C2*A1)/(A1*B2-A2*B1); return point(x, y); } int main() { point p1,p2,p3,p4; int n; while (~scanf("%d",&n)) { printf("INTERSECTING LINES OUTPUT\n"); while (n --) { scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &p1.x,&p1.y,&p2.x,&p2.y,&p3.x,&p3.y,&p4.x,&p4.y); line l1 = line(p1.x, p1.y, p1.x-p2.x, p1.y-p2.y); line l2 = line(p3.x, p3.y, p3.x-p4.x, p3.y-p4.y); if ((p4.x-p3.x)*(p2.y-p1.y) == (p2.x-p1.x)*(p4.y-p3.y)) { if (crossproduct(p1, p2, p3) == 0) printf("LINE\n"); else printf("NONE\n"); }else { point cp = cross(l1, l2); printf("POINT %.2lf %.2lf\n",cp.x,cp.y); } } printf("END OF OUTPUT\n"); } return 0; }
标签:
原文地址:http://blog.csdn.net/mobius_strip/article/details/45148557