一:Leetcode 89 Gray Code
题目:The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]
. Its gray
code sequence is:
00 - 0 01 - 1 11 - 3 10 - 2
分析:题目通过分析会发现这样的规律, 比如当有4位时,首先vector中放入一个0(只有0位的时候);然后当位数为1时,vector中存放的是0和1;当位数为2时,vector中存放的是【0,1,3,2】实际上就是加入了3和2,而3==1+2, 2==0+2;;当位数为3的时候,vector中存放的是【0,1,3,2,6,7,5,4】也就是加入了后4位亦即:6==2+4, 7==3+4,5==1+4,4==0+4.也就是将原有的vector中元素逆序+上当前位所代表的数字(如第三位就是4,第4位就是8等)
代码:
class Solution { public: vector<int> grayCode(int n) { vector<int> result; result.push_back(0); for(int i = 0; i < n; i++){ int k = 1 << i; int len = result.size()-1; while(len >= 0){ result.push_back(result[len] + k); // 这道题的规律在于数据为从后往前+k放入result中 len--; } } return result; } };
题目:
The set [1,2,3,…,n]
contains a total of n!
unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
分析:设元素个数为n,那么排名为k,
第1位要放入的元素:j = ceil(k/(n-1)!) ;剩余元素的排名为:k = k- (j-1)*t。。注意这里后续要放入元素并不是j,而是还未被放入的元素中的第j位
代码:
class Solution { public: int factorial(const int &n){ int sum = 1; for(int i = 1; i <= n; i++) sum *= i; return sum; } string getPermutation(int n, int k) { string str(n, ' '); int x = k; vector<int> visited; visited.resize(n+1,0); for(int i = 0; i < n; i++){ int t = factorial(n-i-1); int j = ceil((x+0.0)/t); /// 未被访问的元素中排名第j个并不是j 放入str[i] ceil是大于等于 x = x - (j-1)*t; // 剩余元素所占排名 int count = 0; for(int p = 0; p < n; p++){ if(!visited[p]) count++; if(count == j){ // 未被访问元素中第j个 stringstream ss; ss << p+1; ss >> str[i]; visited[p] = 1; break; } } } return str; } };
LeetCode89/60 Gray Code/Permutation Sequence--迭代
原文地址:http://blog.csdn.net/lu597203933/article/details/45150143