标签:
上一篇博文《platform设备驱动框架搭建分析》主要是根据内核源码来分析platform驱动模型工作的原理,在实际的驱动开发中如何使用Linux的这么一种模型来管理这种类型的设备呢?把tq2440开发板上的LED1当做是平台设备注册到Linux系统中,让系统可以用这种platform驱动来管理他。
①总线层:代码不用我们自己去写,内核已经提供了
②设备层:向platform总线层注册硬件相关的资源,一般是寄存器地址、内存空间、中断号(序号的一种代表)等等
led_dev.c
#include <linux/module.h> #include <linux/version.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/timer.h> #include <linux/init.h> #include <linux/serial_core.h> #include <linux/platform_device.h> static struct resource led_resource[] = { [0] = { //GPBCON .start = 0x56000010, .end = 0x56000050 + 8 - 1, .flags = IORESOURCE_MEM, //一般地址类的操作就用这个flags }, [1] = { //中断号 .start = 5, .end = 5, .flags = IORESOURCE_IRQ, //在这个例子中和中断并没有半毛钱的关系,纯粹就是表示一种序号的意思 } }; static void led_release(struct device * dev) { } /* 构造platform_device结构体 */ static struct platform_device led_dev = { .name = "myled", .id = -1, .num_resources = ARRAY_SIZE(led_resource), .resource = led_resource, .dev = { .release = led_release, }, }; /* 向platform_bus注册一个设置好的platform_device */ static int led_dev_init(void) { platform_device_register(&led_dev); return 0; } static void led_dev_exit(void) { platform_device_unregister(&led_dev); } module_init(led_dev_init); module_exit(led_dev_exit); MODULE_LICENSE("GPL");
③驱动层:从总线那里获取需要的硬件资源,根据要求用它来完成一些硬件相关的操作,然后把驱动注册到总线,同时还需要完成probe成员函数--这是驱动和设备匹配之后的核心工作,这工作一般是向用户空间提供API,即实现并填充file_operation结构体成员函数
led_drv.c
#include <linux/module.h> #include <linux/version.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/sched.h> #include <linux/pm.h> #include <linux/sysctl.h> #include <linux/proc_fs.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/io.h> static int major; static struct class *cls; static struct device *led_drv_device; /* 在platform_get_resource()和ioremap()之前,下面这变量没有任何实际意义 */ static volatile unsigned long *gpio_con; static volatile unsigned long *gpio_dat; static int pin; static int led_open(struct inode *inode, struct file *file) { /* 配置为输出 */ *gpio_con &= ~(0x3<<(pin*2)); *gpio_con |= (0x1<<(pin*2)); return 0; } static ssize_t led_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos) { int val; copy_from_user(&val, buf, count); if (val == 1) { // 点灯 *gpio_dat &= ~(1<<pin); } else { // 灭灯 *gpio_dat |= (1<<pin); } return 0; } static struct file_operations led_fops = { .owner = THIS_MODULE, .open = led_open, .write = led_write, }; /* 驱动和设备匹配成功之后的核心工作:回到了过去注册字符设备那一套 */ static int led_probe(struct platform_device *pdev) { struct resource *res; /* 根据platform_device的资源进行ioremap */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); gpio_con = ioremap(res->start, res->end - res->start + 1); gpio_dat = gpio_con + 1; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); pin = res->start; /* 注册字符设备驱动程序 */ major = register_chrdev(0, "myled", &led_fops); cls = class_create(THIS_MODULE, "myled"); led_drv_device = device_create(cls, NULL, MKDEV(major, 0), NULL, "led"); /* /dev/led */ return 0; } static int led_remove(struct platform_device *pdev) { device_unregister(led_drv_device); class_destroy(cls); unregister_chrdev(major, "myled"); iounmap(gpio_con); return 0; } struct platform_driver led_drv = { .probe = led_probe, .remove = led_remove, .driver = { .name = "myled", } }; static int led_drv_init(void) { platform_driver_register(&led_drv); return 0; } static void led_drv_exit(void) { platform_driver_unregister(&led_drv); } module_init(led_drv_init); module_exit(led_drv_exit); MODULE_LICENSE("GPL");
platform_driver_register(struct platform_driver *drv);
xxx_drv_exit()
platform_driver_unregister(struct platform_driver *drv);
驱动初始化原材料:
struct platform_driver xxx_drv = {
.probe = xxx_probe,
.remove = xxx_remove,
.driver = {
.name = "xxx",
}
};
实现原材料的成员函数:
xxx_probe(struct platform_device *pdev)
{
//工作:
//1.根据需要向总线获取对应设备资源,
//2.然后拿着这资源该干嘛就干嘛去,有一点是通常都要做的:给应用层提供接口xxx_read() xxx_write() xxx_open() xxx_close()
}
xxx_remove(struct platform_device *pdev)
{
//把刚才probe函数里边注册申请的空间释放掉,动作刚好相反
}
②一个xxx_dev.c文件:
设备初始化和注销函数:
xxx_dev_init()
platform_device_register(struct platform_device *pdev);
xxx_dev_exit()
platform_device_unregister(struct platform_device *pdev);
设备初始化原材料:
static struct platform_device xxx_dev = {
.name = "xxx", //重构name成员
.id = -1,
.num_resources = ARRAY_SIZE(xxx_resource),
.resource = xxx_resource,
.dev = {
.release = xxx_release, //这个函数是要自己重定义的不然加载驱动模块时会出错,哪怕这个函数里边什么都不做都好。
},
};
定义并构造xxx_resource资源:有如下成员
struct resource {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags; //只是一种代表
struct resource *parent, *sibling, *child;
};
标签:
原文地址:http://blog.csdn.net/clb1609158506/article/details/45153497