码迷,mamicode.com
首页 > 其他好文 > 详细

其它索引

时间:2015-04-21 01:46:23      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:

位图索引:

  1. 统计条数奋勇夺冠:
    SQL> drop table t purge;
    
    Table dropped.
    
    SQL> create table t as select * from dba_objects;
    
    Table created.
    
    SQL> insert into t select * from t;
    
    2314432 rows created.
    
    SQL> update t set object_id=rownum;
    
    4628864 rows updated.
    
    SQL> commit;
    
    
    SQL> select count(*) from t;
    
      COUNT(*)
    ----------
       4628864
    -------------------------------------------------------------------
    | Id  | Operation       | Name | Rows  | Cost (%CPU)| Time      |
    -------------------------------------------------------------------
    |   0 | SELECT STATEMENT   |      |    1 | 19312   (8)| 00:03:52 |
    |   1 |  SORT AGGREGATE    |      |    1 |           |      |
    |   2 |   TABLE ACCESS FULL| T      |   289M| 19312   (8)| 00:03:52 |
    -------------------------------------------------------------------
    Statistics
    ----------------------------------------------------------
          65727  consistent gets
          12258  physical reads
     

    SQL> create index idx_t_1 on t(object_id);

    Index created.

    SQL> alter table t modify object_id not null;

    Table altered.

    SQL> set autotrace on
    SQL> select count(*) from t;
    | Id  | Operation          | Name    | Rows    | Cost (%CPU)| Time    |
    -------------------------------------------------------------------------
    |   0 | SELECT STATEMENT      |     |     1 |  2998   (1)| 00:00:36 |
    |   1 |  SORT AGGREGATE       |     |     1 |         |        |
    |   2 |   INDEX FAST FULL SCAN| IDX_T_1 |  5518K|  2998   (1)| 00:00:36 |
    -------------------------------------------------------------------------
    Statistics
    ----------------------------------------------------------
          10865  consistent gets

    SQL> create bitmap index idx_map_t on t(status);

    Index created.

    SQL> select count(*) from t;

      COUNT(*)
    ----------
       4628864

    SQL> select count(*) from t;
    | Id  | Operation              | Name      | Rows  | Cost (%CPU)| Time      |
    -----------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT          |       |    1 |  113   (0)| 00:00:02 |
    |   1 |  SORT AGGREGATE           |       |    1 |           |      |
    |   2 |   BITMAP CONVERSION COUNT     |       |  5518K|   113   (0)| 00:00:02 |
    |   3 |    BITMAP INDEX FAST FULL SCAN| IDX_MAP_T |      |           |      |
    Statistics
    ----------------------------------------------------------
        123  consistent gets

  2. 即席查询一骑绝尘:
    1. 人口普查中,我们会使用性别,年龄范围,出生地等多维的分析统计,这类多维查询可称为即席查询:
      select * from t where col1=xxx and col2=xxx and col3=xxx and col4=xxx...
    2. 构造表t如下,有性别,年龄范围,出生地等字段:
      create table t
      (id, gender not null,location not null,age not null,data) as
      select rownum,
          decode(ceil(dbms_random.value(0,2)),1,M,2,F) gender,
          ceil(dbms_random.value(1,50)) location,
          decode(ceil(dbms_random.value(0,3)),1,child,2,young,3,middle_age,4,old),
          rpad(*,20,*)
      from dual
      connect by rownum<=100000;
      
      set autotrace traceonly
      SQL> select * from t where gender=M and location in (1,10,30) and age=child;
      
      658 rows selected.
      | Id  | Operation      | Name | Rows  | Bytes | Cost (%CPU)| Time     |
      --------------------------------------------------------------------------
      |   0 | SELECT STATEMENT  |     |   671 | 31537 |   171   (1)| 00:00:03 |
      |*  1 |  TABLE ACCESS FULL| T     |   671 | 31537 |   171   (1)| 00:00:03 |
      
         1 - filter("GENDER"=M AND ("LOCATION"=1 OR "LOCATION"=10 OR
                "LOCATION"=30) AND "AGE"=child)
      Statistics
      ----------------------------------------------------------
          652  consistent gets
            16290  bytes sent via SQL*Net to client
      
      --列高度重复,建立联合索引;梁在书里说的走全表扫描的情况没有出现。oracle还是做了优化
      SQL> create index idx_union on t(gender,location,age);
      
      Index created.
      
      SQL> select * from t where gender=M and location in (1,10,30) and age=child;
      
      658 rows selected.
      
      
      Execution Plan
      ----------------------------------------------------------
      Plan hash value: 306189815
      
      ------------------------------------------------------------------------------------------
      | Id  | Operation             | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
      ------------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT         |         |   671 | 31537 |     6   (0)| 00:00:01 |
      |   1 |  INLIST ITERATOR         |         |     |     |          |      |
      |   2 |   TABLE ACCESS BY INDEX ROWID| T     |   671 | 31537 |     6   (0)| 00:00:01 |
      |*  3 |    INDEX RANGE SCAN         | IDX_UNION |     1 |     |     5   (0)| 00:00:01 |
      
      Statistics
      ----------------------------------------------------------
          635  consistent gets
            36405  bytes sent via SQL*Net to client
      --建位图索引
      SQL> create bitmap index idx_gender on t(gender);
      SQL> create bitmap index idx_age on t(age);
      SQL> create bitmap index idx_loc on t(location);
      SQL> select * from t where gender=M and location in (1,10,30) and age=young;
      657 rows selected.
      | Id  | Operation             | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
      ------------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT         |         |   622 | 29234 |     6   (0)| 00:00:01 |
      |   1 |  INLIST ITERATOR         |         |     |     |          |      |
      |   2 |   TABLE ACCESS BY INDEX ROWID| T     |   622 | 29234 |     6   (0)| 00:00:01 |
      |*  3 |    INDEX RANGE SCAN         | IDX_UNION |     1 |     |     5   (0)| 00:00:01 |
      ------------------------------------------------------------------------------------------
      
         3 - access("GENDER"=M AND ("LOCATION"=1 OR "LOCATION"=10 OR "LOCATION"=30)
                AND "AGE"=young)
      Statistics
      ----------------------------------------------------------
          637  consistent gets
            36355  bytes sent via SQL*Net to client
    3. bitmap索引的缺点:
      1. 当向建国bitmap索引的列插入值没有提交时,不允许修改或插入这个特定值的行。
      2. 对于id值绝对不能建立bitmap索引,对比如下
        SQL> create bitmap index idx_btid on t(id);
        SQL> set autotrace traceonly
        SQL> select count(*) from t;
        | Id  | Operation       | Name | Rows  | Cost (%CPU)| Time      |
        -------------------------------------------------------------------
        |   0 | SELECT STATEMENT   |      |    1 |  1675   (1)| 00:00:21 |
        |   1 |  SORT AGGREGATE    |      |    1 |           |      |
        |   2 |   TABLE ACCESS FULL| T      |  1081K|  1675   (1)| 00:00:21 |---走全表扫描:
        Statistics
        ----------------------------------------------------------
               6140  consistent gets
               6051  physical reads
        --强制走索引
        SQL> select /*+index(t,idx_btid)*/ count(*) from t;
        | Id  | Operation         | Name     | Rows  | Cost (%CPU)| Time     |
        -----------------------------------------------------------------------------
        |   0 | SELECT STATEMENT     |        |      1 |  3563   (1)| 00:00:43 |
        |   1 |  SORT AGGREGATE      |        |      1 |         |        |
        |   2 |   BITMAP CONVERSION COUNT|        |  1081K|  3563   (1)| 00:00:43 |
        |   3 |    BITMAP INDEX FULL SCAN| IDX_BTID |        |         |        |
        -----------------------------------------------------------------------------
        Statistics
        ----------------------------------------------------------
               3563  consistent gets
               3494  physical reads
    4. 原理:
      1. 将特定字段的所有的可能值都做成一个一个位图,每个位图以0和1存放值的分布。
      2. 举例:如性别这一字段,值为男和女。则分别有男和女两张位图,在所有的位图里,每一个位bit顺序对应这张表的特定记录(假定是rowid),男位图若为0011100,则表示这张表有7条记录,只有第3-5条记录的值为男,这些位可以直接找到rowid,而为0的位就找不到rowid。相对的,女:1100011。
      3. 如果这张表还有另外一个字段地区,分别有3个值A区,B区,C区,则就有A,B和C3张位图,假定他们的值为
        1. A:1000100;
        2. B:0100001;
        3. C:0011010;那么男和女的加入:
        4. 男:0011100;
        5. 女:1100011;
      4. 如果要找在A区的女人,则把上面的行1和行5做与运算,得新的位图:1000000表示第一条记录符合条件,那么通过位图,就直接得到相对应的rowid。
      5. 位图的压缩:位图的算法使得位图后面的所有0都可以省略,如A:1000100=A:10001。
      6. 位图的锁定:从5可以知道只有当有新的1加入时,位图才会发生改变,位图发生改变时它所指向的rowid会被全部锁定,不可以修改。因为这个原因,位图只适合做查询。
      7. 重复度低的位图索引为变得巨大:如果某列有100个不同的值,100万列,那么这个位图索引的大小大约是1亿位。若它有100万不同的值,100万列,那么大小大约是1万亿位/2=5千亿位,这是非常庞大的数字。这个就是位图索引的软肋。

函数索引:

    1. 列运算让索引失去作用: 比较如下
      SQL> create table t as select * from dba_objects;
      SQL> create index idx_id on t(object_id);
      SQL> create index idx_name on t(object_name);
      SQL> create index idx_crt on t(created);
      --对列运用函数,列的索引失效
      SQL> select * from t where upper(object_name)=T;
      | Id  | Operation      | Name | Rows  | Bytes | Cost (%CPU)| Time     |
      --------------------------------------------------------------------------
      |   0 | SELECT STATEMENT  |     |    12 |  2484 |   289   (1)| 00:00:04 |
      |*  1 |  TABLE ACCESS FULL| T     |    12 |  2484 |   289   (1)| 00:00:04 |
      --------------------------------------------------------------------------
      Statistics
      ----------------------------------------------------------
             1036  consistent gets
      --所以需要建立函数索引
      SQL> create index idx_fx on t(upper(object_name));
      SQL> select * from t where upper(object_name)=T;
      | Id  | Operation            | Name   | Rows  | Bytes | Cost (%CPU)| Time     |
      --------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT        |         |     707 |     188K|     151   (0)| 00:00:02 |
      |   1 |  TABLE ACCESS BY INDEX ROWID| T      |     707 |     188K|     151   (0)| 00:00:02 |
      |*  2 |   INDEX RANGE SCAN        | IDX_FX |     283 |         |       3   (0)| 00:00:01 |
      --------------------------------------------------------------------------------------
      Statistics
      ----------------------------------------------------------
            5  consistent gets
    2. 避免列运算的经典案例
      select * from t where object_id-10<30;--完全没有比较的列运算
      set autotrace traceonly
      set linesize 1000
      --------------------------------------------------------------------------
      | Id  | Operation      | Name | Rows  | Bytes | Cost (%CPU)| Time     |
      --------------------------------------------------------------------------
      |   0 | SELECT STATEMENT  |     |    12 |  2484 |   289   (1)| 00:00:04 |
      |*  1 |  TABLE ACCESS FULL| T     |    12 |  2484 |   289   (1)| 00:00:04 |
      --------------------------------------------------------------------------
      select * from t where object_name like CLUS%;--用这个,不要用下面的:
      select * from t where substr(object_name,1,4)=CLUS;
      select * from t where created>=to_date(2010-10-02,YYYY-MM-DD) AND created<to_date(2010-10-03,YYYY-MM-DD)+1; --好的sql
      select * from t where trunc(created)>=to_date(2010-10-02,YYYY-MM-DD) and trunc(created)<=to_date(2010-10-03,YYYY-MM-DD);
      --注:created的值为:2011/12/7   22:18:33, trunc(created)为:2011/12/7

索引经典案例:

  1. count(* )查询多,加上索引加速。
  2. 少量返回,频繁操作的列,加上组合索引。
  3. Max/Min的列加索引。
  4. 分区索引,查询的sql应该加上分区条件,否则会遍历各个分区索引。
  5. 去掉没有必要的order by操作
  6. 对排序的列加索引
  7. 位图索引是否建立在经常修改的列?
  8. 去除没有必要的索引

其它索引

标签:

原文地址:http://www.cnblogs.com/alexweng/p/4443108.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!