标签:
一 01背包:
一件物品只能放一次
二维动态转移方程 dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])
降低空间复杂度用一维: dp[j] = max(dp[j],dp[j-w[i]]+v[i]), j 从V到0(为了防止数组越界,到w[i])
代码实现:
#include<algorithm> using namespace std; const int MAX = 100; int dp[MAX],w[MAX],v[MAX]; int n,m; int main() { scanf("%d%d",&n,&m); for(int i = 1; i <= n ; i++){ scanf("%d%d",&w[i],&v[i]); } for(int i = 1; i <= n ; i++){ for(int j = m; j >= w[i]; j--){ dp[j] = max(dp[j],dp[j-w[i]]+v[i]); } } printf("%d\n",dp[m]); return 0; }
二 完全背包:
一件物品能放无限次
二维动态转移方程 dp[i][j] = max(dp[i-1][j],dp[i][j-w[i]]+v[i])
降低空间复杂度用一维:dp[j] = max(dp[j],dp[j-w[i]]+v[i]),不过j从0到V(为了防止数组越界,从w[i]开)
也可以看做m/(w[i])个物品,继续看成01背包问题,价值和重量都放大2^k次
代码实现:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAX = 100; int dp[MAX],w[MAX],v[MAX]; int n,m; int main() { scanf("%d%d",&n,&m); for(int i = 1; i <= n ; i++){ scanf("%d%d",&w[i],&v[i]); } for(int i = 1; i <= n ; i++){ for(int j = w[i]; j <= m; j++){ dp[j] = max(dp[j],dp[j-w[i]]+v[i]); } } printf("%d\n",dp[m]); return 0; }
三 多重背包:(hdu2191)
限定了每一件物品的适用次数
法一:
结合01背包和完全背包讨论情况
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAX = 1111; int dp[MAX],w[MAX],v[MAX],t[MAX]; int n,m; void comback(int w,int v) { for(int i = w; i <= n ; i++) dp[i] = max(dp[i],dp[i-w]+v); } void oneback(int w,int v) { for(int i = n ; i >= w; i--) dp[i] = max(dp[i],dp[i-w]+v); } int main() { int T; scanf("%d",&T); while(T--){ memset(dp,0,sizeof(dp)); scanf("%d%d",&n,&m); for(int i = 1; i <= m ; i++){ scanf("%d%d%d",&w[i],&v[i],&t[i]); if(w[i]*t[i] >= n) comback(w[i],v[i]); else { for(int j = 1; j < t[i]; j <<= 1){ oneback(j*w[i],j*v[i]); t[i] -= j; } oneback(t[i]*w[i],t[i]*v[i]); } } printf("%d\n",dp[n]); } return 0; }
法二:
转化成01背包问题,把每一种放大(二进制)
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAX = 1111; int dp[MAX],v[MAX],w[MAX],t[MAX]; int V[MAX],W[MAX]; int main() { int n,m,T; scanf("%d",&T); while(T--){ memset(dp,0,sizeof(dp)); memset(v,0,sizeof(v)); memset(w,0,sizeof(w)); memset(t,0,sizeof(t)); scanf("%d%d",&m,&n); int count = 1; for(int i = 1; i <= n ; i++){ scanf("%d%d%d",&w[i],&v[i],&t[i]); for(int j = 1; j < t[i]; j <<= 1){ V[count] = j*v[i]; W[count] = j*w[i]; count++; t[i] -= j; } V[count] = t[i]*v[i]; W[count] = t[i]*w[i]; count++; } for(int i = 1; i < count; i++){ for(int j = m; j >= W[i];j--){ dp[j] = max(dp[j],dp[j-W[i]]+V[i]); } } printf("%d\n",dp[m]); } return 0; }
四 多重 01 完全混合
五 二维条件的背包
只需要多开一个条件 dp[i][j][k] = max(dp[i-1][j][k],dp[i-1][j-a[i]][k-b[i]]+w[i])
六 分组的背包问题
多开一个for循环
for(int k = 1; k <= n ;k++){ for(int j = m; j >= 0 ; j--){ for(int i = 1 ; i <= a[k]; i++){ dp[j] = max(dp[j],dp[j-w[i]]+v[i]); } } }
#include<cstring> #include<cstdio> #include<algorithm> using namespace std; const int MAX = 110; int dp[MAX]; int a[MAX][MAX]; int w[MAX],v[MAX]; int main() { int n,m; while(~scanf("%d%d",&n,&m)&&n&&m){ memset(dp,0,sizeof(dp)); memset(a,0,sizeof(a)); memset(w,0,sizeof(w)); memset(v,0,sizeof(v)); for(int i = 1;i <= n ; i++){ for(int j = 1; j <= m ; j++) scanf("%d",&a[i][j]); } for(int i = 1; i <= n ; i++){ for(int j = m; j >= 0 ; j--){ for(int k = 1; k <= j;k++){ dp[j] = max(dp[j],dp[j-k]+a[i][k]); } } } printf("%d\n",dp[m]); } return 0; }
七
标签:
原文地址:http://www.cnblogs.com/zero-begin/p/4445196.html