标签:
阅读教材例10.1。该例实现了一个复数类,但是美中不足的是,复数类的实部和虚部都固定只能是double型的。可以通过模板类的技术手段,设计Complex,使实部和虚部的类型为定义对象时指定的实际类型。你可以使用的main()函数如下。
int main( ) { Complex<int> c1(3,4),c2(5,-10),c3; //实部和虚部是int型 c3=c1.complex_add(c2); cout<<"c1+c2="; c3.display( ); Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6; //实部和虚部是double型 c6=c4.complex_add(c5); cout<<"c4+c5="; c6.display( ); //下面测试减法、乘法和除法 …… return 0; }
/* * Copyright (c) 2015,烟台大学计算机学院 * All right reserved. * 作者:邵帅 * 文件:Demo.cpp * 完成时间:2015年04月16日 * 版本号:v1.0 */ #include <iostream> using namespace std; template<class T> class Complex { public: Complex( ) { real=0; imag=0; } Complex(T r,T i) { real=r; imag=i; } Complex complex_add(Complex &c2); Complex complex_minus(Complex &c2); Complex complex_multiply(Complex &c2); Complex complex_divide(Complex &c2); void display( ); private: T real; T imag; }; //复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i. template<class T> Complex<T> Complex<T>::complex_add(Complex<T> &c2) { Complex<T> c; c.real=real+c2.real; c.imag=imag+c2.imag; return c; } //复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i. template <class T> Complex<T> Complex<T>::complex_minus(Complex <T> &c2) { Complex <T> c; c.real=real-c2.real; c.imag=imag-c2.imag; return c; } //复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i. template <class T> Complex<T> Complex<T>::complex_multiply(Complex <T> &c2) { Complex <T> c; c.real=real*c2.real-imag*c2.imag; c.imag=imag*c2.real+real*c2.imag; return c; } //复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i template <class T> Complex<T> Complex<T>::complex_divide(Complex <T> &c2) { Complex <T> c; T d=c2.real*c2.real+c2.imag*c2.imag; c.real=(real*c2.real+imag*c2.imag)/d; c.imag=(imag*c2.real-real*c2.imag)/d; return c; } template<class T> void Complex<T>::display( ) { cout<<"("<<real<<","<<imag<<"i)"<<endl; } int main( ) { Complex<int> c1(3,4),c2(5,-10),c3; cout<<"c1="; c1.display( ); cout<<"c2="; c2.display( ); c3=c1.complex_add(c2); cout<<"c1+c2="; c3.display( ); c3=c1.complex_minus(c2); cout<<"c1-c2="; c3.display( ); c3=c1.complex_multiply(c2); cout<<"c1*c2="; c3.display( ); c3=c1.complex_divide(c2); cout<<"c1/c2="; c3.display( ); cout<<endl; Complex<double> c4(3.1,4.4),c5(5.34,-10.21),c6; cout<<"c4="; c4.display( ); cout<<"c5="; c5.display( ); c6=c4.complex_add(c5); cout<<"c4+c5="; c6.display( ); c6=c4.complex_minus(c5); cout<<"c4-c5="; c6.display( ); c6=c4.complex_multiply(c5); cout<<"c4*c5="; c6.display( ); c6=c4.complex_divide(c5); cout<<"c4/c5="; c6.display( ); return 0; }
是时候复习一下数学了。。。
@ Mayuko
标签:
原文地址:http://blog.csdn.net/mayuko2012/article/details/45174421