码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj 2299 [HAOI2011]向量 裴蜀定理

时间:2015-04-22 20:44:11      阅读:117      评论:0      收藏:0      [点我收藏+]

标签:algorithm   数论   

bzoj 2299 [HAOI2011]向量 裴蜀定理
题意:
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

限制:
-2*1e9 <= a,b,x,y <= 2*1e9

思路:
题目的操作可以化为:
1. x +- 2a;
2. y +- 2a;
3. x +- 2b;
4. y +- 2b;
5. x + a && y + b;
6. x + b && y + a;
7. x + a + b  && y + a + b;
其中5,6,7最多执行一次。
证明:
原题中(x,y)如果可以拼出来的话,一定是:
(t1*a + t2*b, t3*a + t4*b)
t1,t2,t3,t4的奇偶性决定5,6,7的执行次数。

/*bzoj 2299
  题意:
  给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。
  限制:
  -2*1e9 <= a,b,x,y <= 2*1e9
  思路:
  题目的操作可以化为:
  1. x +- 2a;
  2. y +- 2a;
  3. x +- 2b;
  4. y +- 2b;
  5. x + a && y + b;
  6. x + b && y + a;
  7. x + a + b  && y + a + b;
  其中5,6,7最多执行一次。
  证明:
  原题中(x,y)如果可以拼出来的话,一定是:
  (t1*a + t2*b, t3*a + t4*b)
  t1,t2,t3,t4的奇偶性决定5,6,7的执行次数。
 */
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
bool ok(LL x,LL y,LL d){
	if(x%d==0 && y%d==0) return true;
	return false;
}
int main(){
	LL a,b,x,y;
	int T;
	scanf("%d",&T);
	while(T--){
		scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
		LL d=__gcd(2*a,2*b);
		if(ok(x,y,d) || ok(x+a,y+b,d) || ok(x+b,y+a,d) || ok(x+a+b,y+a+b,d)) puts("Y");
		else puts("N");
	}
	return 0;
}


bzoj 2299 [HAOI2011]向量 裴蜀定理

标签:algorithm   数论   

原文地址:http://blog.csdn.net/whai362/article/details/45199447

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!