码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 1385-Binary Stirling Numbers(判断第二类斯特林数的奇偶性)

时间:2015-04-23 09:45:34      阅读:150      评论:0      收藏:0      [点我收藏+]

标签:

Binary Stirling Numbers
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u
Appoint description: 

Description

The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts: 

{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}

{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.


There is a recurrence which allows to compute S(n, m) for all m and n. 
S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.


Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2. 


Example 
S(4, 2) mod 2 = 1.



Task 

Write a program which for each data set: 
reads two positive integers n and m, 
computes S(n, m) mod 2, 
writes the result. 

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow. 

Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9. 

Output

The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

Sample Input

1
4 2


题意:
将n个连续的数分成m个非空的部分的分法:满足公式S(0,0)=1, S(n,0)=0, S(0,m)=0,S(n,m) = mS(n-1,m) + S(n-1, m-1), 求S(n,m)%2的值
分析: 设f(n, m)=S(n,m)%2, 则当m为偶数时,f(n,m)=f(n-1,m-1), 当m为奇数时,f(n,m)=f(n-1,m)+f(n-1,m-1)。建立以n为x轴,以m为y轴,根据以上的公式算出从(0,0)到(n,m)的路径,得出f(n,m)=C((n-m), (m-1)/2),要求f(n,m)%2,根据C(n,m)=n!/(m!(n-m)!),若C(n,m)的分母中2因子的个数等于分子中2因子的个数,则有C(n,m)为奇数,否则C(n,m)为偶数

详细解析:点击打开链接

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
int cnt_2(int x)//x!中2因子的个数
{
    int cnt=0;
    while(x){
        x/=2;
        cnt+=x;
    }
    return cnt;
}

int main()
{
    int T,n,m;
    scanf("%d",&T);
    while(T--){
        scanf("%d %d",&n,&m);
        n=n-m;
        m=(m-1)/2;
        if(cnt_2(n+m)==cnt_2(n)+cnt_2(m))//如果分子分母2的个数相等则为奇数
            puts("1");
        else//否则为偶数
            puts("0");
    }
    return 0;
}


POJ 1385-Binary Stirling Numbers(判断第二类斯特林数的奇偶性)

标签:

原文地址:http://blog.csdn.net/u013486414/article/details/45200673

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!