Problem Description:
LL最近沉迷于AC不能自拔,每天寝室、机房两点一线。由于长时间坐在电脑边,缺乏运动。他决定充分利用每次从寝室到机房的时间,在校园里散散步。整个HDU校园呈方形布局,可划分为n*n个小方格,代表各个区域。例如LL居住的18号宿舍位于校园的西北角,即方格(1,1)代表的地方,而机房所在的第三实验楼处于东南端的(n,n)。因有多条路线可以选择,LL希望每次的散步路线都不一样。另外,他考虑从A区域到B区域仅当存在一条从B到机房的路线比任何一条从A到机房的路线更近(否则可能永远都到不了机房了…)。现在他想知道的是,所有满足要求的路线一共有多少条。你能告诉他吗?
Input:
每组测试数据的第一行为n(2=<n<=50),接下来的n行每行有n个数,代表经过每个区域所花的时间t(0<t<=50)(由于寝室与机房均在三楼,故起点与终点也得费时)。
Output:
针对每组测试数据,输出总的路线数(小于2^63)。
Sample Input:
3
1 2 3
1 2 3
1 2 3
3
1 1 1
1 1 1
1 1 1
Sample Output:
1
6
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <cmath> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #define ll long long using namespace std; const int MAXN = 50 + 10; int C[MAXN][MAXN]; int dis[MAXN][MAXN]; long long dp[MAXN][MAXN]; int vis[MAXN][MAXN]; int Move[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; int n; struct Node { int x, y; int step; bool operator < (const Node& rhs) const { return step > rhs.step; } }; void bfs() { priority_queue<Node> Q; memset(vis, 0, sizeof(vis)); Node pre, now; pre.x = pre.y = n; pre.step = C[n][n]; vis[n][n] = 1; dis[n][n] = C[n][n]; Q.push(pre); while(!Q.empty()) { pre = Q.top(); Q.pop(); if(pre.x > 1 && !vis[pre.x-1][pre.y]) { now.x = pre.x - 1; now.y = pre.y; now.step = pre.step + C[now.x][now.y]; dis[now.x][now.y] = now.step; vis[now.x][now.y] = 1; Q.push(now); } if(pre.x < n && !vis[pre.x+1][pre.y]) { now.x = pre.x + 1; now.y = pre.y; now.step = pre.step + C[now.x][now.y]; dis[now.x][now.y] = now.step; vis[now.x][now.y] = 1; Q.push(now); } if(pre.y > 1 && !vis[pre.x][pre.y-1]) { now.x = pre.x; now.y = pre.y - 1; now.step = pre.step + C[now.x][now.y]; dis[now.x][now.y] = now.step; vis[now.x][now.y] = 1; Q.push(now); } if(pre.y < n && !vis[pre.x][pre.y+1]) { now.x = pre.x; now.y = pre.y + 1; now.step = pre.step + C[now.x][now.y]; dis[now.x][now.y] = now.step; vis[now.x][now.y] = 1; Q.push(now); } } } long long solve(int x, int y) { if(dp[x][y] != -1) return dp[x][y]; dp[x][y] = 0; if(x > 1 && dis[x][y] > dis[x-1][y]) dp[x][y] += solve(x-1, y); if(x < n && dis[x][y] > dis[x+1][y]) dp[x][y] += solve(x+1, y); if(y > 1 && dis[x][y] > dis[x][y-1]) dp[x][y] += solve(x, y-1); if(y < n && dis[x][y] > dis[x][y+1]) dp[x][y] += solve(x, y+1); return dp[x][y]; } int main() { while(scanf("%d", &n)!=EOF) { for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) scanf("%d", &C[i][j]); } bfs(); //for(int i=1;i<=n;i++) //{ // for(int j=1;j<=n;j++) // cout << dis[i][j] << ' '; //cout << endl; //} for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) dp[i][j] = -1; } dp[n][n] = 1; printf("%I64d\n", solve(1, 1)); } return 0; }
原文地址:http://blog.csdn.net/moguxiaozhe/article/details/45224671