标签:
caffe安装之后可以跑的第二个实例是在cifar10数据集上,参见http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
跟mnist的过程很类似:
1./data/cifar10/get_cifar10.sh
2./example/cifar10/create_cifar10.sh 注意这里生成的也是lmdb文件
3./example/cifar10/cifar10_quick_train.sh
这时候会发现存在问题:给的例子有错:
找不到leveldb文件,这是因为 caffe_root/examples/cifar10/cifar10_quick_train_test.prototxt定义网络的时候出错了,定义的source是leveldb文件,与生成的leveldb不一致,解决方法是在create_cifar10中修改生成leveldb文件
但是在改网络定义却不行???
cifar10_quick_train_test.prototxt:name: "CIFAR10_quick"
2 layers {
3 name: "cifar"
4 type: DATA
5 top: "data"
6 top: "label"
7 data_param {
8 source: "examples/cifar10/cifar10_train_leveldb"
9 batch_size: 100
10 }
11 transform_param {
12 mean_file: "examples/cifar10/mean.binaryproto"
13 }
14 include: { phase: TRAIN }
15 }
16 layers {
17 name: "cifar"
18 type: DATA
19 top: "data"
20 top: "label"
21 data_param {
22 source: "examples/cifar10/cifar10_test_leveldb"
23 batch_size: 100
24 }
25 transform_param {
26 mean_file: "examples/cifar10/mean.binaryproto"
"cifar10_quick_train_test.prototxt" 194L, 2877C
最终正确的实验结果在,caffe在cifar10上实现了76%的正确率

标签:
原文地址:http://www.cnblogs.com/cookcoder-mr/p/4451090.html