Problem Description
有N个袋子放成一排,每个袋子里有一定数量的糖果,lzs会随机选择连续的几个袋子,然后拿走这些袋子中包含最多糖果的袋子。现问你,在选择x个袋子的情况下,lzs最坏情况下,也就是最少会拿到多少个糖果?对于x取值为1到n都分别输出答案。
Input
第一行一个整数T,表示有T组数据。
每组数据先输入一行一个整数N(1<=N<=100000),表示袋子数,接下来一行输入N个正整数,输入的第i个数表示第i个袋子所装的糖果数。
Output
每组数据输出n行,第i行表示lzs随机取连续的i个袋子时的最坏情况下能拿到的糖果数。
Sample Input
1
5
1 3 2 4 5
Sample Output
1
3
3
4
5
我是先用rmq预处理区间最大值
然后枚举每个袋子,往左往右二分得到一个最大的区间,此区间的最大值就是枚举的袋子上的值,然后说明长度为1 -> R-L+1的区间都可以得到这个值,用线段树去维护最小值就行了
/*************************************************************************
> File Name: FZU2136.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年04月23日 星期四 18时24分43秒
************************************************************************/
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
static const int N = 101010;
int dp[N][20];
int LOG[N];
int arr[N];
struct node {
int l, r;
int add;
int val;
}tree[N << 2];
void initRMQ(int n) {
for (int i = 1; i <= n; ++i) {
dp[i][0] = arr[i];
}
for (int j = 1; j <= LOG[n]; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
}
}
int ST(int l, int r) {
int k = LOG[r - l + 1];
return max(dp[l][k], dp[r - (1 << k) + 1][k]);
}
void build(int p, int l, int r) {
tree[p].l = l;
tree[p].r = r;
tree[p].add = -1;
if (l == r) {
tree[p].val = inf;
return;
}
int mid = (l + r) >> 1;
build(p << 1, l, mid);
build(p << 1 | 1, mid + 1, r);
tree[p].val = inf;
}
void pushdown(int p) {
if (tree[p].add != -1) {
if (tree[p << 1].add == -1) {
tree[p << 1].add = tree[p].add;
}
else {
tree[p << 1].add = min(tree[p].add, tree[p << 1].add);
}
if (tree[p << 1 | 1].add == -1) {
tree[p << 1 | 1].add = tree[p].add;
}
else {
tree[p << 1 | 1].add = min(tree[p].add, tree[p << 1 | 1].add);
}
tree[p << 1].val = min(tree[p].add, tree[p << 1].val);
tree[p << 1 | 1].val = min(tree[p].add, tree[p << 1 | 1].val);
tree[p].add = -1;
}
}
void update(int p, int l, int r, int val) {
if (l == tree[p].l && r == tree[p].r) {
tree[p].val = min(val, tree[p].val);
if (tree[p].add == -1) {
tree[p].add = val;
}
else {
tree[p].add = min(tree[p].add, val);
}
return;
}
pushdown(p);
int mid = (tree[p].l + tree[p].r) >> 1;
if (r <= mid) {
update(p << 1, l, r, val);
}
else if (l > mid) {
update(p << 1 | 1, l, r, val);
}
else {
update(p << 1, l, mid, val);
update(p << 1 | 1, mid + 1, r, val);
}
tree[p].val = min(tree[p << 1].val, tree[p << 1 | 1].val);
}
int query(int p, int pos) {
if (tree[p].l == tree[p].r) {
return tree[p].val;
}
pushdown(p);
int mid = (tree[p].l + tree[p].r) >> 1;
if (pos <= mid) {
return query(p << 1, pos);
}
else {
return query(p << 1 | 1, pos);
}
}
int main() {
int t;
scanf("%d", &t);
LOG[0] = -1;
for (int i = 1; i <= 100000; ++i) {
LOG[i] = (i & (i - 1)) ? LOG[i - 1] : LOG[i - 1] + 1;
}
while (t--) {
int n;
scanf("%d", &n);
build(1, 1, n);
for (int i = 1; i <= n; ++i) {
scanf("%d", &arr[i]);
}
initRMQ(n);
for (int i = 1; i <= n; ++i) {
int l = 1, r = i, mid;
int L, R;
L = R = i;
while (l <= r) {
mid = (l + r) >> 1;
int maxs = ST(mid, i);
if (maxs <= arr[i]) {
L = mid;
r = mid - 1;
}
else {
l = mid + 1;
}
}
l = i, r = n, mid;
while (l <= r) {
mid = (l + r) >> 1;
int maxs = ST(i, mid);
if (maxs <= arr[i]) {
R = mid;
l = mid + 1;
}
else {
r = mid - 1;
}
}
update(1, 1, R - L + 1, arr[i]);
}
for (int i = 1; i <= n; ++i) {
printf("%d\n", query(1, i));
}
}
return 0;
}
原文地址:http://blog.csdn.net/guard_mine/article/details/45225703